REVISED SYLLABI FOR FIRST DEGREE PROGRAMME IN PHYSICS UNDER CBCSS

LEARNING OUTCOME-BASED CURRICULUM (LOC) FOR UNDERGRADUATE PROGRAMME

(2018 admission onwards)

DEPARTMENT OF PHYSICS

BISHOP MOORE COLLEGE MAVELIKARA

VISION AND MISSION OF THE COLLEGE

VISION

To be a centre of excellence and a catalyst in facilitating a holistic development of youth with international standards, edified with the sanctity of truth, equipped to serve, grounded on Christian ideals.

MISSION

To nurture the enquiring mind to be liberated by truth, empowered by knowledge, committed to service and communal harmony, championing the cause of women and the marginalized and to create a sustainable environment.

PROGRAMME LEARNING OBJECTIVES (PLOs)

PLO1 Professional Skill Development	
-------------------------------------	--

	To develop skills for independent and life-long learning, making use of the latest resources including e-resources	
	To be able to apply the advanced knowledge acquired for the solution of complex problems in professional, social and personal life	
	To acquire communication and presentation skills and become employable in the job market	
PLO2	Core Competency Development	
	To nurture the enquiring mind with profound and extensive knowledge	
	To develop a multidisciplinary perspective and contribute to the knowledge capital of the world in general and the country in particular	
PLO3	Innovative Curriculum of Global Relevance	
	To develop in depth understanding and global competency in the subject of study	
	To acquire global competency in the area of research and create new knowledge in the domain	
PLO4	Environmental Sensitivity and Sustainability	
	To apply the acquired knowledge towards creating a sustainable environment	
	To engage in socially relevant research towards creating a sustainable environment	
	To be shaped into proactive citizens sensitive to environmental and social issues	
PLO5	Ethical Principles and Holistic Development	
	To become competent and responsible citizens, committed to service and communal harmony, steadfast to the cause of women and the marginalized	
	To nurture the enquiring mind to be liberated by truth, reflected in research devoid of plagiarism and truthful publication of results	
	To create new knowledge as well as affordable methods and systems towards championing the cause of the marginalized	
	To evolve as socially responsible individuals committed to service and communal harmony	
	To be moulded into holistically developed individuals with international standards	
PLO6	Accessibility and Academic Excellence	

To be able to apply the scientific knowledge, aesthetics of art and commercial acumen acquired from the programme in real-life situations, work environments and in entrepreneurial endeavours

To develop a global perspective and engage in collaborative research with institutes of international eminence

PROGRAMME OUTCOMES (POs)

PO1	Core Competency and Multidisciplinary Knowledge		
	Graduate students will be able to acquire a comprehensive knowledge of the core subject and a basic understanding of related disciplines to aid them in pursuing careers in multi and interdisciplinary fields		
PO2	Communication Skills		
	Graduate students will develop language competence and be proficient in oral and written communication		
PO3	Critical Thinking and Problem Solving Skills		
	Graduate students will develop critical thinking and apply the acquired knowledge to solve problems in the core subject and allied fields, as well as find solutions to societal problems		
PO4	Life Skills, Employability Skills and Entrepreneurial Skills		
	Graduate students will acquire life and employability skills to place themselves in esteemed positions and employments and entrepreneurial skills to emerge as young entrepreneurs		
PO5	Environment and Sustainability		
	Graduate students will count themselves accountable to protecting the environment and contributing to sustainable development		
PO6	Responsible Citizens for Nation Building		
	Graduate students will become competent and responsible citizens, committed to service and communal harmony, contributing to nation building		

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1	Understand the fundamental concepts of Physics and the significance of physical phenomena
PSO 2	Develop problem solving skills and apply them to problems relating to physical phenomena
PSO 3	Imbibe experimental skills to carry out experiments to understand and explore the laws and concepts of Physics
PSO 4	Analyse the learnt concepts for applying in real life situations and for entrepreneurial endeavours
PSO 5	Acquire scientific temper and critical thinking leading to motivation for progression in Physics

COGNITIVE LEVELS (CLs)

CL1	Remember

CL2	Understand
CL3	Apply
CL4	Analyse
CL5	Evaluate
CL6	Create

Xxxxxxxxxxxxxxxxxx

COURSE DESCRIPTIONS

Course Code	PY1141	
Course Title	Basic Mechanics & Properties of Matter	
Credits	02	
Hours/week	02	
Category	Core Course(CC)-Theory	
Semester	I	
Regulation	2018	
Course Overview		
Course Objective		
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics	

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Dynamics of Rigid Bodies Equations of motion for rotating rigid bodies- angular momentum and Moment of Inertia (MI)- Theorems on MI-calculation of MI of bodies of regular shapes- uniform rod, ring, disc, annular ring, solid cylinder, hollow cylinder and solid sphere- KE of rotating and rolling bodies- torque- Determination of MI of a flywheel (theory, experiment and applications).	07	CO1	CL1; CL2; CL3
II	Conservation of energy Energy Conservation law- Work – power- Kinetic Energy – Work Energy theorem-		CO1	CL1; CL2; CL3
Ш	Oscillations Simple harmonic motion — Energy of harmonic oscillators-simple pendulummass on a spring-oscillation of two particles connected by a spring- compound bar pendulum - interchange ability of suspension and oscillation-four points	12	CO2	CL3; CL4

	collinear with C.G about which the time period is the same-conditions for maximum and minimum periods - Determination of g using symmetric bar pendulum. Mechanical and electromagnetic wave motion- General equation of a wave motion-expression for a plane progressive harmonic wave-energy density for a plane progressive wave			
IV	Elasticity Modulus of elasticity (revision)Relations connecting the three elastic moduli-Poisson's ratio- bending of beamsbending moment-cantilever-centrally loaded beams and uniformly bent beams-I section girders-torsion of a cylinder-expression for torsional couple -work done in twisting a wire-torsion pendulum.	08	CO3	CL4; CL5
V	Surface Tension Surface tension-molecular explanation of STangle of contact(revision)shapes of drops -expression for excess of pressure on a curved liquid surface -variation of ST. with temperature	03	CO4	CL1; CL5; CL6
VI	Fluid Dynamics Streamline and turbulent flow-equation of continuity-Bernoulli's theorem - venturi meter-viscosity-Newton's law- Stoke's formula	03	CO4	CL1; CL5; CL6

Topics for assignments / discussion in the tutorial session (sample)

- 1. Physics-The fundamental science-historical development of mechanics-some implications of the principle of mechanics-The scope of mechanics.
- 2. Life of eminent physicists- Newton, Einstein, C.V.Raman, Edison.
- 3. Study of Young's modulus for different types of wood.
- 4. Study of variation of surface tension for different detergents.
- 5. Study of viscosity of different types of ink and to arrive at knowledge of its fluidity.
- 6. Wide applications of Bernoulli's equation.
- 7. Variation of surface tension with temperature by Jaeger's method

Books for Study:

- 1. Mechanics:H. S.Hans and S. P PuriTMH, 2ndEdn.
- 2. Mechanics: J.C. Upadhyaya and S. Ram Prasad Chand Publications, 2017
- 3. Elements of Properties of Matter: D.S. Mathur, S. Chand Publications, 2008
- 4. Fundamentals of Physics: Halliday and Resnick, Wiley India Pvt. Ltd., 2006

Books for Reference:

- 1. Properties of matter: Brijlal and Subramaniam, S.Chand & Co.,2004
- 2. Principles of Physics: P.V.Naik, PHI,2010

Web Resources

COs	CO Description	Cognitive Level	PSO Addressed
CO1	Differentiate the rigid bodies, interpret the conservation laws and apply the concepts in analysing their advantages in day to day life situations	CL1;CL2; CL3	PSO1; PSO2
CO2	Interpret different oscillatory systems and apply the knowledge in practical systems	CL2; CL4	PSO1; PSO2
CO3	Apply the knowledge of elasticity and related mathematical formulation to elucidate the principles behind physical processes	CL4; CL5	PSO2; PSO4
CO4	Recollect the concepts of flow of fluids and surface tension and use them to solve everyday problems	CL1;CL5; CL6	PSO1; PSO4

Course Code	PY1241
Course Title	Heat & Thermodynamics

Credits	02
Hours/week	02
Category	Core Course(CC)-Theory
Semester	II
Regulation	2018
Course Overview	

Course Objective

Prerequisites Fundamental Knowledge in Physics, Chemistry and Mathematics

UNIT	CONTENT	HOURS	COs	COGNITIVE
	Transference of heat		CO1;	LEVEL CL1;
	Thermal conductivity - determination		CO2;	CL2;
	by Lee's Disc method for bad	08	CO2;	CL2; CL3;
_	conductor radial flow of heat, cylindrical flow, thermal conductivity	08	,	,
I	of rubber, Weidman-Franz law-		CO4;	CL4;
	Radiation of heat, Stefan's law,		CO5;	CL5;
	determination of Stefan's constant,		CO6	CL6
	solar constant, determination of solar temperature			
	Thermodynamics		CO1;	CL1;
	Zeroth Law & First law of		CO2;	CL2;
	Thermodynamics, differential form- Thermodynamic Processes-Expression		CO3;	CL3;
	for work done in isothermal and	18	,	,
	adiabatic processes. Application of first		CO4;	CL4;
II	law to specific heat and latent heat		CO5;	CL5;
	Reversible and irreversible process Second law of thermodynamics-		CO6	CL6
	Clausius and Kelvin statements-Carnot			
	engine- Principle of refrigerator-			
	working and efficiency, Otto engine			
	and Diesel engine – working and efficiency.			
	Entropy		CO1;	CL1;
	Definition of entropy, change of		CO2;	CL2;
	entropy in reversible and irreversible		CO3:	CL3;
III	cycle, Clausius inequality and second law of thermodynamics, entropy and	10	,	,
111	available energy, Entropy, probability	10	CO4;	CL4;
	and disorder Nernst theorem and third		CO5;	CL5;
	law of thermodynamics phase transition, phase diagram, first order		CO6	CL6
	and second order phase transition			
	Property of the property of th			I

(qualitative	idea)	Clausius-Clepeyron		
Equation				

Topics for assignments /discussion in the tutorial session (sample)

Books for Study:

- 1. Thermal and Statistical Mechanics: S.K. Roy, New Age International
- 2. Heat and Thermodynamics: D. S. Mathur, S. Chand &Co
- 3. Heat Thermodynamics and Statistical Physics: Brijlal & Subramaniam, S. Chand &Co
- 4. Thermal Physics, Statistical Physics and Solid-State Physics: C. J. Babu, Calicut University Press
- 5. Engineering Thermodynamics: P. K. Nag, McGraw-Hill, 5th Edn.

Books for Reference:

- 1. Heat and Thermodynamics: Zemansky, McGraw-Hill
- 2 Heat and Thermodynamics: Rose C McCarthy, The Rosen Publishing Group, Inc.NY,2005
- 3 Thermodynamics, Kinetic Theory and Statistical Thermodynamics: F. W. Sears and G. L. Salinger, Addison-Wesley Publishing Company, 3rdEdn.

Web Resources

COs	CO Description	Cognitive	PSO
	_	Level	Addressed
CO1	Develop knowledge of the laws of thermal	CL1; CL2;	
	conductivity and thermodynamics, and understand	CL3	
	its implications.		
CO2	Understand different thermodynamic processes	CL2; CL4;	
	and analyze and evaluate efficiency of different	CL5	
	heat engines		
CO3	Develop appreciation of the concepts of order,	CL1; CL2;	
	disorder, entropy for different thermodynamic	CL3; CL4	
	processes		
CO4			
CO5			
CO6			
CO7			

Course Code	PY 1341				
Course Title	Electrodynamics				
Credits	03				
Hours/week	03				
Category	Core Course(CC)-Theory				
Semester	III				
Regulation	2018				
Course Overview					
Course Objective					
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics				

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
	Electrostatic Field			
	Electric field: introduction, Coulomb's		CO1;	CL1;
	law, Electric field, continuous distribution		CO2;	CL2;
	(Revision) , Divergence and curl of		CO3;	CL3;
T	electrostatic fields; Field lines, flux	10	CO4;	CL4;
_	applications of gauss's law, Curl of E,	10	CO5;	CL5;
	Electric potential: Introduction to		CO6	CL6
	potential, Comments on potential,			
	Poisson's and Laplace's equations,			
	potential of a localized charge distribution,			
	Electrostatic boundary, Work and Energy			
	in Electrostatics: The work done to move a			

	charge, the energy of a point charge			
	distribution, The energy of a continuous			
	charge distribution.			
	Electrostatic fields in matter		CO1;	CL1;
	Polarization: Dielectrics, induced dipoles,		CO2;	CL2;
	Polarization, The field of a polarized		CO3;	CL3;
II	object: Bound charges, physical	10	CO4;	CL4;
	interpretation of bound charges and the		CO5;	CL5;
	field inside a dielectric Electric		CO6	CL6
	displacement: Gauss's law in the presence			
	dielectrics, Boundary conditions.			
	Magnetostatics		CO1;	CL1;
	Introduction- The Biot- Savart law,		CO2;	CL2;
	Ampere's force law (revision), Magnetic		CO3;	CL3;
III	torque, Magnetic flux and gauss's law for	07	CO4;	CL4;
	magnetic fields, magnetic vector potential,		CO5;	CL5;
	Magnetic intensity and Ampere's circuital		CO6	CL6
	law, magnetic materials.			
	_			
	Electromagnetic Induction		CO1;	CL1;
	Electromotive force: Ohm's law		CO1;	CL1; CL2;
IV	Electromagnetic Induction Faraday's law,		CO2;	CL2; CL3;
	the induced electric field, Maxwell's	07	CO4;	CL4;
	equations, Magnetic charge.		CO5;	CL5;
	equations, wagnetic charge.		CO3,	CL6,
	Electromagnetic waves (6hrs)		CO1;	CL1;
\mathbf{V}	Waves in one dimension: The wave		CO2;	CL2;
	equation Electromagnetic waves in	06	CO3;	CL3;
	vacuum: The wave equation for E and B,	06	CO4;	CL4;
	Monochromatic plane waves, Energy and		CO5;	CL5;
	momentum in electromagnetic waves.		CO6	CL6
	Transient currents Growth and decay of current in LP and		CO1; CO2;	CL1;
VI	Growth and decay of current in LR and CR Circuits-Measurement of high			CL2; CL3;
	$_{ m I}$	07	CO3; CO4;	,
	resistance by leakage-Charging and	07	CO4; CO5;	CL4; CL5;
	discharging of a capacitor through LCR circuit.		CO5; CO6	CL5; CL6
	Alternating current		CO ₀	CL6
	AC through series LCR (acceptor circuit)		CO1, CO2;	CL1, CL2;
VII	and parallel LCR circuit (rejecter circuit)		CO2, CO3;	CL2, CL3;
	Q- factor, Power in AC-power factor.	07	CO3, CO4;	CL3, CL4;
	Q- factor, I ower in AC-power factor.		CO ₄ , CO ₅ ;	CL4, CL5;
			CO3,	CL3, CL6
			CO0	CLO

Topics for assignments /discussion in the tutorial session (sample)

- 1. Comment on how electrostatic energy is stored in a field
- 2. Discuss the electrostatic properties of conductors
- 3. What is meant by electrostatic shielding? In what way it helps us?
- 4. Discuss the peculiarities of electric displacement D and electric field E. How they are incorporated in Maxwell's Equation

- 5. Discuss the properties of linear dielectrics. What differentiates a dielectric to be linear or not?
- 6. Discuss applications of Ampere's circuital law
- 7. Compare electrostatics and magnetostatics
- 8. Why magnetic forces cannot do work
- 9. Discuss about cyclotron motion & cycloid motion
- 10. Discuss whether there exists any stand-off between ohm's law and Newton's second law
- 11. A battery has an *emf*. Can this *emf*. be a 'force'? How will you interpret electromotive force?
- 12. Discuss the role of motional *emf* in power generation
- 13. Discuss the orthogonality of E, B and propagation vector k
- 14. A wave function can have a sinusoidal representation. Solve the wave equation for this function and discuss the various terms related to a wave such as amplitude, frequency, phase, wave number.
- 15. Complex representation of wave function has good advantage. Why? Discuss the linearity of wave function. (use complex notation)
- 16. Discuss AC through LC, LR and CR circuits
- 17. Show that sharpness of resonance is equal to Q- factor
- **18.** What is a choke coil? Discuss the advantage of using a choke coil instead of a resistor

Books for Study:

- 1. Electrodynamics: David J Griffith, PHI, 3rdEdn.
- 2. Electricity and Magnetism: Murugesan, S. Chand & Co.
- 3. Electricity and Magnetism: K. K. Tiwari, S. Chand & Co.
- 4. Principles of electromagnetics: N.O. Matthew Sadiku and S. V. Kulkarni Oxford University Press, 6thEdn.

Books for Reference:

- 1. Electricity and Magnetism: Muneer H. Nayfeh & Norton K. Bressel, John Wiley & Sons
- 2. Electricity and Magnetism: E. M. Purcell, Berkley Physics course, Vol.2, MGH
- 3. Electricity and Magnetism: J. H. Fewkes & John Yarwood, University Tutorial Press
- 4. Classical Electrodynamics: Walter Greiner, Springer International Edn.
- 5. Electromagnetic waves and radiating systems: Jordan & Balmain, PHI
- 6. Electromagnetics: B. B. Laud, Wiley Eastern Ltd., 2nd Edn.
- 7. Introduction to electrodynamics: Reitz & Milford, Addison Wesley
- 8. Electromagnetic theory fundamentals: Bhag Guru and Huseyin Hizirogulu, Cambridge University Press, 2nd Edn.
- 9. Electricity and Magnetism: D. C. Tayal, Himalaya Publishing Co.

Web Resources

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1		
CO2		
CO3		
CO4		
CO5		
CO6		
CO7		

Course Code	PY1441			
Course Title	Classical and Relativistic Mechanics			
Credits	03			
Hours/week	03			
Category	Core Course(CC)-Theory			
Semester	IV			
Regulation	2018			
Course Overvie	w			
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
	Particle Dynamics		CO1;	CL1;
	Mechanics of a particle – equation of	05	CO2;	CL2;
	motion of a particle - Motion of a	03	CO3;	CL3;
I	charged particle in electromagnetic		CO4;	CL4;
	field – mechanics of a system of		CO5;	CL5;
	particles.		CO6	CL6
	Conservation laws (6 hrs)		CO1;	CL1;

	linear uniformities of space and	06	CO2;	CL2;
	conservation of linear momentum –		CO3;	CL3;
II	rotational invariance of space and law		CO4;	CL4;
	of conservation of angular momentum		CO5;	CL5;
	- homogeneity of flow of time and		CO6	CL6
	conservation of energy.			
	Motion in central force field		CO1;	CL1;
	Equivalent one body problem – motion		CO2;	CL2;
	in central force field – general features		CO3;	CL3;
III	of motion – motion in an inverse square	10	CO4;	CL4;
	law force field – equation of the orbit –		CO5;	CL5;
	Kepler's laws of planetary motion and		CO6	CL6
	their deduction.			
	Collisions		CO1;	CL1;
IV	Conservation laws- Conservation of		CO2;	CL2;
1 1	momentum- laboratory and centre of		CO3;	CL3;
	mass systems- kinetic energies in the	06	CO4;	CL4;
	lab and CM systems-Cross-section of		CO5;	CL5;
	elastic scattering.		CO6	CL6
	Lagrangian Dynamics		CO1;	CL1;
\mathbf{V}	Constraints-generalized coordinates-	09	CO2;	CL2;
,	principle of virtual work-D' Alembert's	0,	CO3;	CL3;
	principle, Lagrange's equation from		CO4;	CL4;
	D'Alembert's principle-applications of		CO5;	CL5;
	Lagrange's equation in simple		CO6	CL6
	pendulum, Atwood's machine and			
	compound pendulum, Comparison of			
	Lagrangian approach with Newtonian			
	approach.		CO1;	CL1;
	Hamiltonian Dynamics Generalized momentum and cyclic		CO1; CO2;	CL1; CL2;
VI	coordinates- Hamiltonian function H-		CO2, CO3;	CL2, CL3;
	conservation of energy- Hamilton's	05	CO3, CO4;	CL3, CL4;
	equation - examples of Hamiltonian		CO ₅ ;	CL4; CL5;
	dynamics- one dimensional harmonic		CO3,	CL6,
	oscillator.		200	CLO
VII	Frames of Reference, Galilean			
	transformation and Special theory of			
	relativity			
	Inertial frames of reference- Galilean			
	transformation- non- inertial frames		CO1;	CL1;
	Origin and significance of special		CO2;	CL2;
	theory of relativity-search for universal		CO3;	CL3;
	frame of reference-Michelson-Morley	13	CO4;	CL4;
	experiment- postulates of special		CO5;	CL5;
	theory of relativity- consequences-		CO6	CL6
	Lorentz transformation equations-			
	kinematical consequences of Lorentz			
	transformations-length contraction-time			

dilation-twin paradox-trans	rmation of
velocity- variation of	nass with
velocity- mass energy equiv	lence.

Topics for assignments /discussion in the tutorial session (sample)

Books for Study:

- 1. Classical Mechanics: J. C. Upadhyaya, Himalaya Publishing
- 2. Mechanics: H. S. Hans and S. P. Puri, Tata-McGraw Hill
- 3. Classical Mechanics: G. Aruldhas, PHI Learning Pvt Ltd., 2008
- 4. Introduction to classical mechanics: R. G. Thakwale and P. S. Puranik, Tata-McGraw Hill.
- 5. Classical Mechanics: Vimal Kumar Jain, Ane Books Pvt. Ltd., 2009

Books for Reference:

- 1. Classical Mechanics: Goldstein.
- 2. Modern Physics: Ronald Gautreau, Shaum's outlines series, 1999
- 3. Classical Mechanics-Systems of Particles & Hamiltonian Dynamics: Walter Greiner, Springer,2nd Edn.
- 4. Classical Mechanics: N.C Rana and P. S. Joag, TMH Education Pvt. Ltd., 2015
- 5. Modern Physics: R. Murugersan, S. Chand &Co., Reprint, 2008.

Web Resources

COs	CO Description	Cognitive Level
CO1		
CO2		
CO3		
CO4		
CO5		
CO6		
CO7		

Course Code	PY1442
Course Title	Basic Physics Lab 1
Credits	03
Hours/week	02
Category	Core Course (CC)-Practical
Semester	I,II,IV & IV
Regulation	2018
Course Overview	w
Course Objectiv	ve
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics

Sl.No	CONTENT	HOURS	COs	COGNITIVE LEVEL
01.	Fly Wheel - Moment of Inertia			
02.	Compound Bar Pendulum – Symmetric			
03.	Compound Bar Pendulum – Asymmetric			
04.	Uniform BendingYPin and			

	Microscope			
05.	Uniform bending—Y- optic lever method			
06.	Non-uniform bending-Y-Optic lever&			
	telescope			
07.	Rigidity modulus –Static torsion			
08.	Torsion pendulum I- By Torsional oscillations			
09.	Torsion pendulum I- By Equal masses			
10.	Kater's pendulum-Acceleration due to			
	gravity		CO1;	CL1;
11.	Melde's stringFrequency of fork		CO2;	CL2;
12.	Phase transition-determination of M.P of		CO3;	CL3;
	wax.	02	CO4;	CL4;
13.	Determination of thermal conductivity of	02	CO5	CL5;
	rubber			CL6
14.	Lee's disc-determination of thermal			
	conductivity of a bad conductor			
15.	Viscosity-Continuous flow method using			
1.0	constant pressure head.			
16.	Viscosity-Variable pressure head			
17	arrangement			
17.	Surface tension-Capillary rise			
18. 19.	Sonometer-frequency of A.C Kundt's tube-determination of velocity of			
19.	sound.			
20.	Determination of m and Bh using			
20.	deflection and vibration magnetomers.			
21.	Potentiometer-Resistivity.			
22.	Comparison of least counts of measuring			
_ .	instruments.			
23.	Evaluation of errors in simple			
	experiments.			
Doforo	mana	•	•	

References

- 1. Yarwood and Wittle; Experimental Physics for Students, Chapman & Hall Publishers.
- 2. An advanced course in practical physics, Chathopadhyaya, Rakshit and Saha, New central agency, Kolkata.
- 3. A text book of practical physics, S. Viswanathan& Co., Chennai.
- 4. Advanced Practical Physics, B. L. Worsnop and H. T. Flint, Khosla Publishers, Delhi.

Books for Reference:

Web Resources

COs	CO Description	Cognitive
		Level

CO1	Apply the experimental methods to correlate with the Physics theory.	CL1;CL2;CL3
CO2	Apply the various procedures and techniques for the experiments.	CL3
CO3		CL4;CL5
	Use the different measuring devices and meters to record the data with precision	
CO4	Apply the mathematical concepts/equations to obtain quantitative results	CL5
CO5	Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results	CL6

Course Code	PY1541
Course Title	Quantum Mechanics
Credits	04
Hours/week	04
Category	Core Course(CC)-Theory
Semester	V
Regulation	2018

$\boldsymbol{\alpha}$	\sim	•
Course	()X/4	PKILOXI
Course	\mathbf{v}	JI V IC VV

Course Objective

Prerequisites

Fundamental Knowledge in Physics, Chemistry and Mathematics

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	The Emergence of Quantum Mechanics Limitations of classical physics, Black body radiation curve-Optical spectra — photoelectric effect -specific heat of solids -Plank's quantum hypothesis, Einstein's theory of photoelectric effect -Compton effect- Quantum theory of specific heat of solids, -Bohr model- hydrogen atom-Bohr	18	CO1	CL1; CL2; CL6
II	Wave Mechanics (22 hrs) Wave nature of particles-electron diffraction- standing wave of electron in the orbit uncertainty principle -uncertainty relation among canonically conjugate pairs-application- non-existence of electrons in the nucleus-ground state energy of hydrogen atom- width of spectral lines-Properties of wave function-Conditions for Physical Acceptability of Wave Function, Normalization and orthogonality condition. Superposition Principle-wave packets, relation between - Particle velocity- group velocity and phase velocity- Probability Interpretation of Wave Function -Statistical Interpretation of Wave function - probability current density in one dimension-Expectation value- Time dependent Schrodinger equation,-Time independent Schrodinger equation - stationary states.	22	CO2	CL5; CL6
III	One Dimensional Energy Eigen Value Problems Free particle Schrodinger equation—square-well potential with infinite walls-Square well potential with finite walls, square potential barrier—The Harmonic oscillator- (Schrodinger method).	14	CO3	CL3; CL4
	General Formalism of Quantum Mechanics Linear vector space, Linear operator,		CO4	CL2; CL4

IV	Eigen values and Eigen functions-,	18	
	Hermitian operator, Postulates of		
	Quantum Mechanics-Equation of motion-		
	Schrodinger representation- Momentum		
	representation.		

Topics for assignments /discussion in the tutorial session (sample)

Books for Study:

- 1. Quantum Mechanics: G. Aruldhas, PHI, 2ndEdn., 2002
- 2. A Text book of Quantum Mechanics: P.M. Mathews & K. Venkatesan- McGraw Hill, 2ndEdn., 2010
- 3. Quantum Mechanics: Robert Eisberg and Robert Resnick, Wiley, 2nd Edn. 2002
- 4. Quantum Mechanics: Leonard I. Schiff, TMH, 3rd Edn., 2010
- 5. Concepts of Modern Physics: Arthur Beiser, TMH, 6th Edn.

Books for Reference:

- 1. Quantum Mechanics: Eugen Merzbacher, John Wiley and Sons Inc.,2004
- 2. Introduction to Quantum Mechanics: David J. Griffith, Pearson Education, 2nd Ed. 2005
- 3. Quantum Mechanics: Walter Greiner, Springer, 4th Edn., 2001
- 4. Quantum Mechanics: Bruce Cameron Reed, Jones and Bartlett, 2008.
- 5. Quantum Mechanics for Scientists & Engineers: D.A. B. Miller, Cambridge University Press, 2008
- 6. Shaum's outline series

Web Resources

COs	CO Description	Cognitive Level
CO1	To understand the limitations of classical physics and to implement the principles of Quantum Mechanics for the explanation of various physical phenomena.	CL1, CL2, CL5
CO2	To perform quantitative calculations based on the relationship between wavefunction and the system properties to evaluate systems using Schrodinger equation	CL3,CL5
CO3	To apply Schrodinger wave equation to solve quantum mechanical problems such as free particle, square well potential, square potential barrier and harmonic oscillator	CL3, CL4
CO4	To understand the methodologies and mathematical expressions used in Quantum Mechanics and to represent various systems using different representations	CL2, CL4

COs		CO Description	Cognitive Level	
CO1	To understand the limitations of classical physics and to implement the principles of Quantum Mechanics for the explanation of various physical phenomena.		CL1, CL2, CL5	
CO2	To perf between systems	CL3,CL5		
CO3	To appl mechan potentia	CL3, CL4		
CO4	CO4 To understand the methodologies and mathematical expressions used in Quantum Mechanics and to represent various systems using different representations			
Course C	Code	PY1542		
Course T	Title	Statistical Physics, Research Methodology and Disa Management	ster	
Credits		04		
Hours/w	eek	04		
Category	7	Core Course(CC)-Theory		
Semester V				
Regulation 2018				
Course Overview				
Course Objective				
Prerequi	sites	Fundamental Knowledge in Statistics and probability,	possible disasters	

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
	Statistical Physics		CO1;	CL1;
	Statistical probability, Macro and Micro		CO2;	CL2;
	states, Phase space, Statistical ensemble,		CO3;	CL3;
	Postulate of equal probability, Maxwell	18	CO4;	CL4;
Ţ	Boltzmann distribution, Velocity		CO5;	CL5;
_	distribution. Indistinguishability of		CO6	CL6
	identical particles, Bose Einstein and			
	Fermi Dirac distribution function,			
	comparison of three statistics.			
II	Research Methodology		CO1;	CL1;
	Research - Objectives and motivation in		CO2;	CL2;
	research - different types of research-		CO3;	CL3;
	research approaches- Significance of		CO4;	CL4;
	research Research methods and		CO5;	CL5;

	methodology – Research and scientific	18	CO6	CL6
	method- Various steps in a research			
	process- importance of literature survey-			
	= = = = = = = = = = = = = = = = = = = =			
	criteria of good research.			
	Thesis/ Report writing - preliminary			
	section (Title page, declaration of author,			
	certificate of supervisor, table of contents,			
	list of tables and figures, preface			
	acknowledgement), Main Text (abstract,			
	introduction, experimental section, results			
	and discussion), Conclusions, references,			
	scope for future study.			
	Error Analysis	12	CO1;	CL1;
	Significant figures- Basic ideas of error		CO2;	CL2;
	measurement, uncertainties of		CO3;	CL3;
III	measurement, importance of estimating		CO4;	CL4;
	errors, dominant errors, random errors,		CO5;	CL5;
	systematic errors, rejection of spurious		CO6	CL6
	measurements.			
	Estimating and reporting of errors, errors			
	with reading scales, absolute and relative			
	errors, and standard deviation, Variance in			
	measurements, error bars and graphical			
	representation.			

IV	Disaster Management (24hrs) Global natural disasters: Natural hazards and natural disasters, Recent major disasters and their relief efforts, Impact of global climate change and major natural disasters, Human adaptability of natural disasters, Fragile natural eco-environment, Disaster reduction activity, achievements, challenges and future development Earth quake disaster and their and their effects, Advancement in research of earthquake disaster, earthquake and tsunami warnings, earthquake disaster prevention, earthquake disaster mitigation Health emergencies and diseases: environmental health and diseases; disasters and emergencies, steps in disaster management, pre-disaster activity, role of water supply, need for protecting large scale water supply schemes, assessment of damaged and available and water resources, water quality testing- Personal hygiene, control of communicable diseases and prevention of epidemics, measures for controlling communicable diseases and epidemics. Radiation emergencies, health consequence of radiation, measures to	24	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6

Topics for assignments / discussion in the tutorial session (sample)

Books for Study:

- 1. Thermal and Statistical Mechanics: S. K. Roy –New Age International-2001
- 2. Elements of Statistical Mechanics: Kamal Singh and S. P. Singh- S. Chand & Co.1999
- 3. Thermal Physics, Statistical Physics and Solid-State Physics: C. J. Babu, Calicut University Press
- 4. Introduction to Statistical Mechanics: S. K. Sinha, Alpha Science International Ltd. 2005
- 5. Statistical Mechanics: B. K. Agarwal- New Age International 2007
- 6. Research Methodology: C. R. Kothari, New Age International Publishers.
- 7. Natural disaster mitigation a scientific and practical approach: Science Press, Beijing, 2009
- 8. Environmental health in emergencies and disasters: A practical guide, B.Wisner & J.Adams (Eds.), WHO, Geneva, 2002 ISBN 92-4 154541-0.
- 9. Introduction to Disaster Management: Satish Modh, Macmillan, 2010

Books for Reference:

- 1. Statistical Mechanics: S. Rajagopal
- 2. Introduction to Statistical Physics: Kerson Huang -CRC Press, 2001
- 3. Statistical Mechanics: Norman Davison, Courier Corporation, 2013
- 4. Disaster Management: Harsh K Gupta, Universities Press, 2003

Web Resources

COs	CO Description	Cognitive Level	PSO Addressed
CO1	Differentiate between MB, BE and FD statistics and the conditions under which BE and FD distributions behave as MB distributions Learn to construct illustrative examples of MB, BE and FD distributions	CL2; CL6	PSO1; PSO2
CO2	Acquire the ability to choose methods appropriate to their research aims and objectives	CL3; CL4	PSO4; PSO5
CO3	Analyse and explain errors in measurements and experiments	CL4; CL5	PSO1; PSO2
CO4	Compare hazards, disasters and associated natural phenomena and their interrelationships, causes and their effects - developing humanitarian Assistance before and after disaster,	CL2;CL3;CL	PSO1; PSO2; PSO4
	Apply knowledge about existing global frameworks and existing agreements and role of community in successful Disaster Risk Reduction		

Course Code PY1543

Course Title	Electronics			
Credits	04			
Hours/week	04			
Category	Core Course(CC)-Theory			
Semester	V			
Regulation	2018			
Course Overvie	w			
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			

UNI T	CONTENT	HOURS	COs	COGNITIV E LEVEL
I	Circuit Theory Kirchhoff's law- Ideal voltage and current sources- Thevenin's and Norton's theorem, Maximum power transfer theorem	04	CO1;	CL1; CL2; CL3; CL4
п	Diode Circuits Extrinsic semiconductors-n- type and – p- type semiconductors-PN junction-PN junction under forward and reverse biased conditions-r m s value and peak inverse voltage- diode characteristics-ac and dc resistances- half wave and full wave rectifiers- (average dc value of current, ripple factor and efficiency)- different types of filters(shunt capacitor, LC and RC)- break down mechanism in diodes- Zener diode- voltage regulator.	14	CO2; CO3;	CL1; CL2; CL3; CL4;
III	Transistors Theory of BJT operation- CB,CE and CC characteristics-alpha, beta and gamma – relation between transistor currents-biasing circuits(CE configuration)-stability factors-selection of operating point-ac and dc load lines-Q point-collector feedback; base resistor and potential divider methods- BJT amplifiers-input and output impedances-graphical analysis of CE amplifier(frequency response, band width and gain in dB)-emitter follower.	16	CO4;	CL1; CL2; CL3; CL4; CL5; CL5

IV	Power amplifiers: (5 hours) Amplifier classes and efficiency - class A operation - transformer coupled class A amplifier - class B amplifier - push pull amplifier - basic ideas of class C operation - distortion in amplifiers.	24	CO4;	CL1; CL2; CL3; CL4; CL5; CL5
V	Feedback & Oscillator circuits Feedback principles – negative feedback - advantages of negative feedback - positive feedback - principle of sinusoidal feedback - oscillation - Barkhausen criterion for oscillations - RC phase shift, Hartley Oscillator, Colpitts Oscillator (derivations not required).	08	CO4;	CL1; CL2; CL3; CL4; CL5; CL5
VI	Modulation Fundamentals of modulation - AM, FM - frequency spectrum of AM - power in AM - demodulation of AM signal - frequency spectrum for FM	05	CO5;	CL1; CL2;
VI	Special devices JFET- Basic construction - Theory of operation - Static characteristics - Drain characteristics- Advantages - MOSFET - Depletion enhancement MOSFET - Construction - Static characteristics. Unijunction Transistor - Construction operation.	08	CO6	CL1; CL2;
VII	Operational amplifiers (IC741) Introduction – Schematic symbol and pin configuration – circuit configuration and block diagram representation – differential amplifier-ideal OP amp. – CMRR – differential mode and common mode – virtual ground principle – parameters of OP amp. – inverting amplifier – non-inverting amplifier – summing-differentiator- integrator amplifiers.	12	CO4;	CL1; CL2; CL3; CL4; CL5; CL5

Topics for assignments /discussion in the tutorial session (sample)

Electronic projects using flip flops.

- 2. Electronic projects using logic gates.
- 3. Electronic projects using IC 741 OP amp.
- 4. Electronic projects using timer 555.
- 5. Electronic projects using IC 311.
- 6. Constant voltage power supplies.
- 7. Constant current sources.
- 8. Oscillators of different frequencies.
- 9. Low range frequency generators.

- 10. High range frequency generators.
- 11. Voltage regulated dc power supplies with variable output.
- 12. Voltage regulated dual power supplies with variable output.
- 13. Instrument for the measurement of capacitance.
- 14. Instrument for the measurement of dielectric constant of a liquid/ solid.
- 15. Effect of temperature on electronic components.

Books for Study:

Basic electronics: Devices, circuits and IT fundamentals: Santiram Kal, PHI, 2009

- 2. Basic Electronics-Solid State: B. L. Theraja, S. Chand Ltd., 2005
- 3. Principles of Electronics: V. K. Mehta, S. Chand Ltd., 2005
- 4. A first course in Electronics: Anwar A. Khan, Kanchan K. Dey, PHI, 2006
- 5. Communication Electronics: Jose Robin and Ubald Raj, Indira Publications, 2002

Books for Reference:

Electronic Devices and Circuits: Theodore F. Bogart Jr., Universal book stall

- 2. Electronic devices and Circuit theory: Robert Boylestad & Louis Nashelski,PHI,5th
- 3. Electronic fundamentals & applications: John D Ryder, PHI, 4thEdn.
- 4. Electronic Communications: Dennis Roddy, John Coolen, Pearson, 4thEdn.
- 5. The art of electronics: Paul Horowitz and Winfield Hill 2nd Edn. Cambridge University Press, 2006.

Web Resources

- 1) http://vlabs.iitkgp.ernet.in/be/#
- 2) https://nptel.ac.in/courses/122106025

COs	CO Description	Cognitive Level
CO1	Will be able to recognize the network theorems and analyse the current, voltage and power across various components of a circuit	CL1, CL2, CL3, CL4
CO2	Will be able to describe diode characteristics and compare the performance of different types of rectifier circuit	CL1, CL2
CO3	Will be able to design power supply circuits by applying junction diodes	
CO4	CO4 Will be able to design single stage transistor amplifiers, oscillators and operational amplifiers, power amplifiers	

CO5	Will be able to explain the concept of modulation	CL1, CL2
CO6	Will be able to explain the working of special devices, FET, MOSFET, UJT	CL1, CL2

Course Code	PY1544			
Course Title	Atomic & Molecular Physics			
Credits	04			
Hours/week	04			
Category	Core Course(CC)-Theory			
Semester	V			
Regulation	2018			
Course Overview	w			
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			

UNIT	CONTENT	HOURS	COs	COGNITIVE
I	Vector Atom Model Bohr's theory, correspondence principle Somerfield's atom model and explanation of fine structure of H line in Balmer series of hydrogen atom.Limitation of Sommerfeld atom model Vector atom model-Various quantum numbers associated with vector atom model-, L.S and j.j couplings – application of spatial quantization- Pauli's exclusion principle - magnetic dipole moment of electron due to orbital and spin motion - Spin-Orbit coupling.	10	CO1;	CL1; CL2; CL4;

TT	A4			
II	Atomic Spectra Optical spectra-Spectral terms and notations - selection rules - intensity rule and interval rule - fine structure of sodium D lines – hyperfine structure-alkali spectra - Zeeman effect - Larmor's theorem – quantum mechanical explanation of normal Zeeman effect. Anomalous Zeeman effect –Paschen-Back effect-Stark effect.	14	CO1; CO2;	CL1, CL2; CL4
III	X-ray Diffraction X-rays- Discovery- properties -scattering - Measurement of X-ray wavelengths by ruled gratings-X-ray Spectra- continuous and characteristics X- ray spectrum-Origin of continuous Spectrum -Origin of characteristic X-rays-X-ray energy level diagramAbsorption of X-rays- Applications of X-rays.	08	CO3;	CL2; CL3;
IV	Electromagnetic spectra-molecular energies-classification of molecules-rotational spectra of diatomic molecules-rotational energy levels-selection rules-rotational spectrum-isotope effect- bond length and atomic mass Diatomic vibrational spectra-vibrational energy levels-selection rule-vibrational transitions-Rotation-Vibration transitions-IR spectrometer Raman scattering- classical description of Raman scattering- quantum theory of Raman scatteringvibrational Raman spectra-diatomic molecules-polyatomic molecules-rotational Raman spectra Raman spectrometer Electronic spectra sequences and progressions-Frank-Condon principle.	28	CO2;	CL2;
V	Resonance Spectroscopy NMR principle-Resonance condition- NMR spectrometer-chemical shift-indirect spin-spin Interaction- applications of NMR spectroscopy- ESR principle- Resonance condition –ESR spectrometer- hyperfine interaction – applications of ESR spectroscopy Mossbauer spectroscopy- principle - isomer shift	12	CO4;	CL2; CL5;
Topics	isomer shift for assignments /discussion in the tutorial	session (sar	nple)	

Books for Study:

- 1. Modern Physics: G. Aruldhas and P. Rajagopal, PHI, New Delhi, 2005
- 2. Modern Physics: R. Murugesan, S. Chand& Co., Reprint, 2008
- 3. Atomic and Nuclear Physics: N. Subramaniam & Brijlal, S. Chand& Co.
- 4. Atomic Physics: J. B. Rajam, S. Chand&Co.
- 5. Concepts of Modern Physics: A. Beiser, TMH, New Delhi, 6thEdn.

Books for Reference:

- 1. Fundamentals of Molecular Spectroscopy: Banwell, TMH
- 2. Spectroscopy: Walker & Straw, Chapman & Hill.
- 3. Molecular Spectroscopy: G. Aruldhas, PHI, 2004
- 4. Atomic and Nuclear Physics: Dr. V. W. Kulkarni-Himalaya Publishing House.

Web Resources

COs	CO Description	Cognitive Level	PSOs addressed
CO1	To learn and analyse about different atomic models, understand their significances and know about its merits and demerits.	CL1, CL2,CL4	PSO1, PSO3
CO2	To understand the concepts of atomic and molecular spectroscopy.	CL2	PSO1
CO3	To have basic knowledge about origin of X-rays and its applications	CL2, CL3	PSO2
CO4	To learn about different kinds of resonance spectroscopies	CL2,CL5	PSO1,PSO4
CO5	To know about the various spectroscopic techniques, instrumentation, and its applications.	CL3,CL6	PSO5

Course Code	PY1641			
Course Title	SOLID STATE PHYSICS			
Credits	04			
Hours/week	04			
Category	Core Course (CC)-Theory			
Semester	VI			
Regulation	2018			
Course Overview				
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	Crystal Structure Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors Lattice with a Basis – Unit Cell-Elements of symmetry-Types of Lattices -two and three dimensional- Miller Indices- Reciprocal LatticeBrillouin Zones Diffraction of X-rays by Crystals. Bragg's		CO1; CO2;	CL1; CL2; CL3;

	Law X- ray diffraction techniques-Inter			
	atomic forces. Types of bonding Conduction in Metals- Free electron			
II	model Introduction-conduction electrons-free electron gas-electrical conductivity-electrical resistivity versus temperature-	12	CO3	CL1;CL2; CL4
	heat capacity of conduction electrons - Fermi surface -electrical conductivity- effects of the Fermi surface-thermal conductivity in metals-Hall effect and magneto resistance -AC conductivity and optical properties-failure of free electron model.			
Ш	Band theory Bloch theorem- Kronig Penny model- Band Gaps- Conductors-Semiconductors and insulators- P and N type Semiconductors- Conductivity of Semiconductors- mobility- Hall Effect- Hall coefficient.	10	CO3	CL1; CL4;
IV	Dielectric Properties of Materials (12 hrs) Polarization- Local Electric Field at an Atom- Depolarization Field- Electric Susceptibility- Polarizability- Clausius Mosotti Equation- Classical Theory of Electric Polarizability- Normal and Anomalous Dispersion- Cauchy and Sellmeir relations- Langevin-Debye equation- Complex Dielectric Constant-Optical Phenomena- Application: Plasma Oscillations- Plasma Frequency- Plasmons	12	CO4	CL1; CL2;CL5;
V	Magnetic Properties of Matter Dia, Para, Ferri and Ferromagnetic Materials- Classical Langevin Theory of Dia and Paramagnetic Domains- Quantum Mechanical Treatment of Para magnetism- Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains- Discussion of B-H Curve. Hysteresis and Energy Loss	12	CO5	CL1; CL2; CL4
VI	Superconductivity Critical Temperature-Critical magnetic field-Meissner effect- Type I and type II Superconductors- London's Equation and Penetration Depth- Isotope effectBCS theory- Tunnelling and Josephson Effect (Qualitative study)	08	CO5; CO6	CL1; CL2; CL3;CL4; CL6

Topics for assignments / discussion in the tutorial session (sample)

Books for Study:

- 1. Elements of Solid-State Physics: J. P. Srivastava, 2nd Edn., 2006, Prentice-Hall of India
- 2. Elementary Solid-State Physics: M. Ali Omar, Pearson India, 1999
- 3. Solid State Physics: M. A. Wahab, Narosa Publication, 2011
- 4. Elements of Solid-State Physics: J.P. Srivastava, 2nd Edn., Prentice-Hall of India, 2006.

Books for Reference:

- 1. Introduction to Solid State Physics: Charles Kittel, 8th Edn., Wiley India Pvt. Ltd., 2004
- 2. Introduction to Solids: Leonid V. Azaroff, Tata Mc-Graw Hill, 2004
- 3. Solid State Physics: Neil W. Ashcroft and N. David Mermin, Cengage Learning, 1976
- 4. Solid State Physics: Rita John, McGraw Hill, 2014
- 5. Solid-State Physics: H. Ibach and H Luth, Springer, 2009

Web Resources

COs	CO Description	Cognitive Level	PSO Addressed
CO1	Understanding the various types of crystal structure and their properties	CL1;CL2;	PSO1
CO2	Apply the concept of X-ray diffraction to interpret crystalline structure	CL1;CL2; CL3	PSO1;PSO2; PSO5
CO3	Summarize the details of band theory and the developments of semiconductor physics	CL1;CL2; CL4	PSO1;PSO4
CO4	Learn to discuss and evaluate dielectric properties of materials	CL1;CL2; CL5;	PSO1
CO5	Able to discuss types of magnetic properties of materials and learn the fundamentals of superconductivity		PSO1;PSO3
CO6	Able to illustrate theoretical formulation of superconductors	CL1;CL2; CL3;CL4; CL6	PSO1;PSO4

Course Code	PY1642		
Course Title	Nuclear and Particle Physics		
Credits	04		
Hours/week	04		
Category	Core Course(CC)-Theory		
Semester	I		
Regulation	2018		
Course Overview	Course Overview		
Course Objective			
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics		

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	General Properties of Nuclei Constituents of nucleus and their Intrinsic properties-quantitative facts about sizemass- charge density (matter energy), binding energy- average binding energy and its variation with mass number- main features of binding energy versus mass number curve- nuclear stability- angular momentum- parity- magnetic moment-electric quadrupole moments- Nuclear forces-meson theory.	14	CO1;	CL1; CL2;
II	Nuclear Models Liquid drop model -semi empirical mass formula and significance of various terms, condition of nuclear stability. Shell model-evidence for nuclear shell structure, nuclear magic numbers, basic assumptions of shell model, Collective model.	11	CO2;	CL4; CL5;
III	Radioactivity Alpha decay-basics of α-decay processes, theory of α-emission, Gamow's theory, Geiger Nuttal law, α -decay- energy kinematics for α- decay, positron emission, electron capture, neutrino hypothesis, Gamma decay: Gamma ray emission & kinematics, internal conversion.	12	CO3	CL2; CL3;
IV	Nuclear Reactions Types of Reactions, Conservation Laws, kinematics of reactions, Q-value- reaction rate- reaction cross section- reaction mechanism-Concept of compound nucleus	09	CO6	CL2; CL3;
V	Particle Detectors & Accelerators GM counter-scintillation counter- Linear accelerator- Cyclotron- Synchrotron-betatron	06	CO6	CL2; CL3;
VI	Nuclear Fission and Fusion (12 hrs) Nuclear fission-energy released in fission- Bohr and Wheeler's theory-chain reaction - multiplication factor-critical size-atom bomb-nuclear reactors-breeder reactors- uses of nuclear reactors. Nuclear fusion- sources of stellar energy-thermonuclear reactions-hydrogen bomb-controlled thermo-nuclear reactions-magnetic bottle- Tokamak- inertial confinement-nuclear	12	CO6	CL2; CL3;

	power in India			
VII	Particle Physics Particle interactions- basic features- types of particles and its families Symmetries and Conservation Laws-baryon number-Lepton number- Isospin- Strangeness and charm- concept of quark model- Cerenkov radiation	08	CO6	CL1; CL2; CL4;

Topics for assignments /discussion in the tutorial session (sample)

Books for Study:

- 1. Modern Physics: R. Murugesan, S. Chand & Co., Reprint, 2008
- 2. Modern Physics: G. Aruldhas and P. Rajagopal, PHI, New Delhi, 2005.
- 3. Nuclear Physics: D. C. Tayal, Himalaya Publishing House, 4th Edn.
- 4. Concepts of Modern Physics: A. Beiser, Tata McGraw-Hill, New Delhi, 6th Edn.
- 5. Atomic and Nuclear Physics: N. Subramaniam and Brijlal, S.Chand & Co.
- 6. Atomic Physics: J. B. Rajam, S.Chand & Co.
- 7. Introduction to Elementary Particles: D. Griffith, John Wiley & Sons
- 8. Nuclear Physics: S. N. Ghoshal, S. Chand & Co.

Books for Reference:

- 1. Concepts of nuclear physics: Bernard L. Cohen, Tata Mcgraw Hill, 1998
- 2. Nuclear Physics: Kaplan, Narosa publications
- 3. Introductory nuclear Physics: Kenneth S. Krane, Wiley India Pvt. Ltd., 2008
- 4. Introduction to the physics of nuclei & particles: R. A. Dunlap, Thomson Asia, 2004
- 5. Quarks and Leptons: F. Halzen and A. D. Martin, Wiley India, New Delhi
 - 6. Basic ideas and concepts in Nuclear Physics- An Introductory Approach: K. Heyde, Institute of Physics Publishing, 2004
- 7. Radiation detection and measurement: G. F. Knoll, John Wiley & Sons, 2000
- 8. Theoretical Nuclear Physics: J. M. Blatt & V. F. Weisskopf, Dover Pub. Inc., 1991

Web Resources

COs	CO Description	Cognitive Level	PSOs addressed
CO1	Understand the general properties of nucleus and nuclear forces	CL1, CL2	PSO 1
CO2	Understand the different nuclear models and know about their differences	CL4, CL5	PSO1
CO3	Attain knowledge about the phenomena of radioactivity & radiation hazards	CL2,CL3	PSO2,PSO4
CO4	Understand different particle detectors and	CL1,CL2,CL	PSO4, PSO5

	accelerators	6	
CO5	Learn the elementary particles, analyse its groups and know about their properties	CL1,CL2,CL 4	PSO1, PSO3
CO6	Know about the fission and fusion reactions and its applications	CL2,CL3	PSO4,PSO5

Course Code	PY1643
Course Title	Classical and Modern Optics

Credits	04
Hours/week	04
Category	Core Course(CC)-Theory
Semester	VI
Regulation	2018
Course Overview	W
Course Objectiv	e
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Interference of light The principle of superposition - coherent sources - Double slit interference (theory of interference fringes and band width) - Interference by division of wave front and amplitude -Fresnel's biprism-interference in thin films-classification of fringes-wedge shaped films-testing of optical flatness-Newton's rings(reflected system)-refractive index of a liquid- Michelson interferometer - determination of wavelength	14	CO1, CO2	CL1, CL2, CL4
П	Diffraction Fresnel diffraction: - Half-period zones - explanation of rectilinear propagation of light- diffraction at a straight edge-zone plate. Fraunhofer diffraction: - Diffraction at a single slit, double slits - plane transmission grating - Rayleigh's criterion for resolution -resolving power of diffraction grating.	14	CO2	CL3, CL5
Ш	Polarisation Plane polarized light -polarization by reflection – Brewster's law - pile of plates - Malus law - Double refraction - Huygens explanation for double refraction in uniaxial Crystals - Nicol prism - Nicol prism as a polarizer and analyzer – Theory-production and analysis of plane, circularly and elliptically polarized light - quarter and half wave plates.	12	CO2;	CL3, CL5

IV	Basic principle of laser operation Einstein coefficient, light propagation through medium and condition for light amplification population inversion by pumping and cavity threshold condition, line shape function- optical resonators (qualitative) Q factor various laser systems – Ruby laser - He-NE laser, Dye laser, semiconductor laser, (working principle only) Application of lasers- characteristics of laser beams -spatial coherence - Temporal coherence and spectral energy density Nonlinear optics: Nonlinear Polarization – second harmonic generation – phase matching	14	CO3;	CL1, CL4
V	Fibre Optics Introduction, optical fibre, the numerical aperture, coherent bundle, pulse dispersion in step index fibre, graded index fibre, single mode fibre, multimode fibre, Fibre optic sensors (Qualitative), fibre optic communication (qualitative), Advantages of fibre optic communication system.	10	CO4;	CL2, CL6
VI	Holography: (8 hrs) Principle of holography, recording of holograms, reconstruction of images (Theory not needed), application of holography, different types of holograms, transmission and reflection types.	08	CO4;	CL2, CL6

Topics for assignments / discussion in the tutorial session (sample)

- 1. Michelson's interferometer-Standardization of metre.
- 2. Diffraction at a rectangular aperture and circular aperture
- 3. Optical activity-Fresnel's theory of optical rotation.
- 4. Resolving power of prism and telescope
- 5. Constant deviation spectrometer.
- 6. Laurent's half shade polarimeter.
- 7. Laser applications.
- 8. Study of Fraunhofer lines using spectrometer. .
- 9. Determination of refractive index of liquid by Newton's rings method.
- 10. Comparison of radii of curvature by Newton's rings method.

Books for Study:

- 1. Text Book of Optics: Subramaniam & Brijlal, .Avadhanulu, 23rd Edn., 2006
- 2. Optics: Ajoy Ghatak, TMH, 2005
- 3. Optics and spectroscopy: R. Murugesan and K Sivaprasad, S. Chand & Co., 2010
- 4. Lasers Principles, Types and applications: K. R. Nambiar, New Age International Pvt.

Ltd. 2006

5. Optics: Eugene Hecht, Addison-Wesley 2002

Books for Reference:

- 1. Fundamentals of Optics: Jenkins and White, MCH
- 2. Modern Classical Optics: Geoffrey Brooker, Oxford University Press, 2003
- 3.Fundamentals of Optics-Geometrical Physical and Quantum:D. R. Khanna and H. R.Gulati, R. Chand,1984
- 4. Lasers & Non-Linear Optics: B. B. Laud, New Age International Pvt. Ltd., 2011
- 5. Electronic Communications: Dennis Roddy & John Coolen, Pearson, 1995

Web Resources

COs	CO Description	Cognitive Level
CO1	To know the principles of interference and to analyse different phenomena observed	CL1, CL2, CL4
CO2	To analyze the basic properties of light and to evaluate the principles of optical instruments.	CL3, CL5
CO3	To know the principles of LASER and to use it for the construction of various lasers.	CL1, CL4, CL6
CO4	To understand the advanced applications of light in communication system and industry	CL2, CL6

Course Code	PY1644			
Course Title	Digital Electronics and Computer Science			
Credits	04			
Hours/week	04			
Category	Core Course(CC)-Theory			
Semester	VI			
Regulation	2018			
Course Overvie	Course Overview			
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Number systems Decimal number system-binary number system-conversion 2of binary number to decimal and decimal number to binary-binary addition and subtraction-21's complement-2's complement-binary subtraction using 2's complement-signed arithmetic operation-conversion of real numbers-conversion of decimal fraction to binary fraction-binary coded decimal hexadecimal number system-conversion of hexadecimal number to decimal, decimal to hexadecimal, binary to hexadecimal and hexadecimal to binary-real or floating point representation of numbers-ASCII code. Boolean algebra and logic gates Logic gates AND, OR, NOT, NAND, NOR And Ex-OR gate-realization of other logic functions using NAND / NOR gates-tri state logic gate-Boolean laws-Demorgan's theorem-Simplification of Boolean equations using Boolean laws. Karnaugh map Arithmetic circuits Half adder-full adder-controlled inverter-binary adder- subtractor. Sequential circuits Flip-Flop, S-R Flip Flop, J-K Flip-flop, Master slave JK Flip-Flop	22	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6

П	Basics of computers Hardware- input and output units- memory unit-ALU-control unit-basic operational concepts-Software – operating systems The memory systems:- Basic concepts- semiconductor RAM- internal organization memory chips- static memories-asynchronous and synchronous DRAM-structure of large memories- ROM,PROM,EPROM, EEPROM-flash memory-speed size and cost-Basic concepts of cache memory and virtual memories. Secondary storage-magnetic hard disks-optical disks-magnetic tape systems	11	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
III	Programming in C++ Features of c++ - basic structure of c++ program — library files-header files — preprocessor directives- inbuilt functions- output using cout- input with cin — constants and variables — data types — declaration of variables — integer variables, character variables, floating point types, type bool - assigning values to variables—manipulators-operators and expressions—arithmetic operators, relational operators, logical operators, short hand operators-control statements- for loops , while loop, dowhile loop- if statement, ifelse, elseif constructions, switch statement- break, continue, go to statements-user defined functions-function definition, function declaration, function header and body, function call and execution, passing arguments to functions, returning values from functions, overloaded functions, inline functions, default arguments, scope rule for functions- storage classes-Arrays- array elements, array initialization, multidimensional arrays, passing arrays to functions-strings-basics of structures and pointers in c++, classes and objects (introduction only)-basic file operations- serial and sequential files, reading and writing -simple examples of c++ programs for solving problems in physics- compilation and execution of data.	25	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6

	Introduction to microprocessors			
IV	Microprocessors and microcontrollers		CO1;	CL1;
1 1	(definition only)-intel 8085-8 bit		CO2;	CL2;
	microprocessor-pin disruption - 8085	14	CO3;	CL3;
	instructions - addressing modes(definition		CO4;	CL4;
	only)- interrupts (definition only) -		CO5;	CL5;
	assembly language - simple programs-		CO6	CL6
	addition, subtraction.			

Topics for assignments /discussion in the tutorial session (sample)

Books for Study:

- 1. Fundamentals of Microprocessors and Microcomputers: B. Ram, Dhanpat Rai Publications
- 2. Digital principles and Applications: Malvino and Leach.TMH, New Delhi, 4th Edn.
- 3. Fundamentals of Computers: V. Rajaram, PHI, New Delhi, 4th Edn.
- 4. A first course in Computers: S. Saxena, Vikas Publishing House Pvt. Ltd.,
- 5. Programming in C++: D. Ravichandran, Tata Mc Graw Hill, 2011
- 6. Object oriented programming in C++:Robert Lfore, Galgotia publications Pvt Ltd., 3rd Edn., 2004
- 7. The C++ programming language: Bjome Stroustrup, 4th Edn. Addison Wesley
- 8. Object oriented programming with C++: E. Balaguruswami, 5th Edn., Tata Mc Graw Hill
- 9. Programming in C++: M.T. Somasekharan, PHI Pvt. Publishing,2005
- 10. Numerical Methods with computer programs in C++:P. Ghosh, PHI Learning Pvt. Ltd.
- 11. The 8085 microprocessors: K. Udayakumar and B. S. Umasankar, Dorling Kindersley (India) Pvt. Ltd.,2008
- 12. Microprocessor 8085,8086:Abhishek Yadav, University Science Press, New Delhi 2008
- 13. Microprocessor-Architecture, Programming and applications with 8085:R. S. Gaonkar

Books for Reference:

- 1. Introduction to digital electronics: NIIT, PHI.
- **2.** A first course in Computers: Sanjay Saxena, Vikas publishing house Pvt. Ltd.

Web Resources

COs	CO Description	Cognitive
		Level
CO1	Understand, differentiate different number systems and interpret the relationships among them	CL1; CL2; CL3; CL4; CL5
CO2	Outline, Analyse and design different logic gate circuits and	CL1; CL2; CL3;

	categorize different boolean expressions	CL4; CL5
CO3	Explain principle of operations for various arithmetic and sequential electronic circuits	CL1; CL2
CO4	Understand the basic components and operational concepts of computers and microprocessors	CL1; CL2; CL3
CO5	Develop programming skills for solving problems in Physics using C++	CL1; CL2; CL3; CL6

Course Code	PY1661.4			
Course Title	Nano Science and Technology			
Credits	02			
Hours/week	02			
Category	Elective Courses (EC)-Theory			
Semester	VI			
Regulation	2018			
Course Overvi	iew			
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
	Introduction			
	Length scales in Physics- nanometer-		CO1;	CL1;
	Nanostructures: Zero, One Two- and		CO2;	CL2;
I	Three-dimensional nanostructures	06	CO3;	CL3;
	Band Structure and Density of State at		CO4;	CL4;
	nanoscale: Energy Bands, Density of		CO5;	CL5;
	States at low dimensional structures.		CO6	CL6
	Electrical Transport in Nanostructure			
	Electrical conduction in metals, The free	15	CO1;	CL1;
	electron model. Conduction in		CO2;	CL2;
	insulators/ionic crystals - Electron		CO3;	CL3;
П	transport in semiconductors - Various		CO4;	CL4;
	conduction mechanisms in 3D (bulk),		CO5;	CL5;
	2D(thin film) and low dimensional		CO6	CL6
	systems: Thermionic emission, field			
	enhanced thermionic emission (Schottky			

	CO1:	
	CO1.	
08	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL5
09	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
10	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
06	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
	09	08

Books for Study:

- 1. Introduction to Nanoscience & Nanotechnology by K. K. Chattopadhyay and A. N. Banerjee, PHI Learning and Private Limited
- 2. Nanotechnology, Rakesh Rathi, S Chand & Company, New Delhi
- 3. NANO: The Essentials, T. Pradeep, McGraw Hill Education (India) Private Limited

Books for Reference:

- 1. Nanoparticle Technology Handbook M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama (Eds.), Elsevier 2007
- 2. Encyclopaedia of Materials Characterization, Surfaces, Interfaces, Thin Films, Eds. Brundle, Evans and Wilson, Butterworth Heinemann, 1992
- 3. Springer Handbook of nanotechnology, Bharat Bhushan (Edn.), Springer-Verlag, Berlin, 2004
- 4. Nano Science and Technology, VS Muraleedharan and A Subramania, Ane Books Pvt. Ltd, New Delhi
- 5. A Handbook on Nanophysics, John D, Miller, Dominant Publishers and Distributors, Delhi-51
- 6. Introduction to Nanotechnology, Charles P Poole Jr. and Frank J Owens, Wiley Students Edn.
- 7. Nano-and micro materials, K Ohno et. al, Springer International Edition 2009, New Delhi.

Web Resources

COs	CO Description	Cognitive Level
CO1	To understand basic classification and density of states of various nanostructures.	CL1 & CL2
CO2	To evaluate the modifications of electrical transports in nanostructures.	CL2 & CL4
CO3	To understand the quantum mechanical behavior of nanostructures.	CL3 & CL5
	Evaluation of energy and density of states of nanostructures with the aid of quantum mechanics	
CO4	To familiarize the experimental realization of nanostructures. A qualitative analysis of various growth techniques	CL2 &CL3
CO5	Analysis of nanostructures using sophisticated tools.	CL4 & CL6
CO6	Application of nanoscience in day to day life	CL5
CO7	Elementary ideas on various challenges and future perspectives of nanoscience.	CL5 & CL6

Course Code	PY1645
Course Title	Advanced Physics Lab 2
Credits	03
Hours/week	02
Category	Core Course (CC)-Practical
Semester	V & VI
Regulation	2018
Course Overview	W
Course Objectiv	e
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics

Sl.No	CONTENT	HOURS	COs	COGNITIVE LEVEL
01.	Spectrometer-A, D and n of a solid prism.			
02.	Spectrometer –Dispersive power and			
	Cauchy's constants.			
03.	Spectrometer Grating—Normal incidence-			
	N & wavelength			
04.	Spectrometer-i-d curve			
05.	Spectrometer- Hollow prism			
06.	Liquid lens-refractive index of liquid and			
	lens.			
07.	Newton's Rings—Reflected system			

08.	Air wedge-diameter of a wire.			
09.	Potentiometer-Resistivity.			
10.	Potentiometer-Calibration of ammeter			
11.	Potentiometer – Reduction factor of T.G.		CO1;	CL1;
12.	Potentiometer –Calibration of low range		CO2;	CL2;
	voltmeter.	02	CO3;	CL3;
13.	Potentiometer – Calibration of high range	02	CO4;	CL4;
	voltmeter.		CO5;	CL5;
14.	Thermo emf-measurement of emf using		CO6	CL6
	digital multimeter.			
15.	Carey Foster's bridge-Resistivity			
16.	Carey Foster's bridge-Temperature			
	coefficient of resistance.			
17.	Mirror galvanometer-figure of merit.			
18.	BG- Absolute capacity of a condenser			
19.	Conversion of galvanometer into ammeter			
	and calibration using digital Multimeter.			
20.	Conversion of galvanometer into			
	voltmeter and calibration using digital			
	Voltmeter.			
21.	Circular coil-Calibration of ammeter.			
22.	Study of network theorems-Thevenin's &			
	Norton's theorems and maximum power			
	transfer theorem.			
23.	Circular coil-Study of earth's magnetic			
	field using compass box.			
24.	Absolute determination of m and Bh using			
	box type and Searle's type vibration			
2.5	magnetometers.			
25.	Searle's vibration magnetometer-			
D.C.	comparison of magnetic moments.			

References

- 1. Yarwood and Wittle; Experimental Physics for Students, Chapman & Hall Publishers.
- 2. An advanced course in practical physics, Chathopadhyaya, Rakshit and Saha, New central agency, Kolkata.
- 3. A text book of practical physics, S. Viswanathan& Co., Chennai.
- 4. Advanced Practical Physics, B. L. Worsnop and H. T. Flint, Khosla Publishers, Delhi.

Books for Reference:

Web Resources

COs	CO Description	Cognitive	PSOs
		Level	addressed

CO1	Hand on experience on various light sources and spectrometer, learn to arrange optics related experimental set-up.	CL6	PSO2
CO2	Understand the different phenomenon of optics through though laboratory experiments	CL1, CL2	PSO1
CO3	Gain practical knowledge about electricity and magnetism and measurements such as: Resistance, Voltage, current etc.	CL3	PSO3
CO4	Apply the theories learnt and the skills acquired to solve real time problems	CL4	PSO5
CO5	Data analysis, error calculation and laboratory report preparation	CL5, CL4	PSO4

Course Code	PY1646			
Course Title	Advanced Physics Lab 3			
Credits	03			
Hours/week	02			
Category	Core Course (CC)-Practical			
Semester	V & VI			
Regulation	2018			
Course Overview				
Course Objective				
Prerequisites Fundamental Knowledge in Physics, Chemistry and Mathematics				

Sl.No	Content	Hours	COs	Cognitive Level
01.	PN junction Diode (Ge & Si)			
	characteristics-To draw the characteristic			
	curves of a PN junction diode and to			
	determine its ac and dc forward			

	· ,			
	resistances.			
02.	Full wave (centre tapped) rectifier-To			
	construct a full wave rectifier using			
	junction diode and to calculate the ripple			
	factor with and without shunt filter (10			
	readings for R _L 100 to 5000).			
03.	Full wave (centre tapped) rectifier-To			
	construct a full wave rectifier using			
	junction diode and to study effect of L,C,			
	and LC filters on the ripple factor (for		CO1;	CL1;
	different R _L).		CO2;	CL2;
04.	Bridge rectifier-To construct a bridge		CO3;	CL3;
0 1.	rectifier using junction diodes and to		CO4;	CL4;
	calculate the ripple factor with and without	02	CO5;	CL5;
		0 -	CO6	CL6
	shunt filter (10 readings for R _L 100 to			CLO
05	5000).			
05.	Bridge rectifier- Dual power supply-To			
	construct a dual power supply using bridge			
	rectifier and measure the output voltages			
	for different pair of identical load resistors.			
06.	Zener diode characteristics-To draw the I-			
	V characteristic of a Zener diode and to			
	find the break down voltage and the			
	dynamic resistance of the diode.			
07.	Zener diode as a voltage regulator-To			
	construct a voltage regulator using Zener			
	diode and to study the output voltage			
	variation (i) for different RL and (ii) for			
	different input voltage with same R _L .			
08.	Transistor characteristics-CE-To draw the			
00.	characteristic curves of a transistor in the			
	CE configuration and determine the			
	current gain, input impedance and output			
	impedance.			
09.	Transistor characteristics-CB-To draw the			
U.J.	characteristic curves of a transistor in the			
	CB configuration and determine the			
	current gain, input impedance and output			
10	impedance.			
10.	Single stage CE amplifier-To construct a			
	single stage CE transistor amplifier and			
	study its frequency response.			
11.	OP amp. IC741- Inverting amplifier-To			
	construct an inverting amplifier using			
	IC741 and determine its voltage gain.			
12.	OP amp. IC741- Non-inverting amplifier-			
	To construct a non-inverting amplifier			
	using IC741 and determine its voltage gain			

OP amp. IC741- Differentiator-To
construct an OP amp. Differentiator,
determine its voltage gain and study the
output response to pulse and square wave.
OP amp. IC741- Integrator-To construct
an OP amp. Integrator, determine its
voltage gain and study the output response
to pulse and square wave.
Phase shift oscillator-To construct a phase
shift oscillator using transistor and
measure the frequency of the output
waveform.
Logic gates- OR and AND-To verify the
truth tables of OR and AND gates using
diodes.
Network theorems (Superposition,
Thevenin's & Norton's theorems) -To
verify the (i) Superposition, (ii)
Thevenin's & (iii) Norton's theorems.
RC-Filter circuits (Low pass)-To construct an RC –low pass filter circuit and to find
the upper cut off frequency.
RC Filter circuits (High pass)-To construct
an RC –high pass filter circuit and to find
the lower cut off frequency.
Program to find the roots of a quadratic
equation (both real and imaginary root)
Program to find the dot product and cross
product of vectors.
Program to plot the functions Sin x, Tan x
and e ^x
and c
Program to find the matrix addition,
multiplication, trace, transpose and
inverse.
Program to convert hexadecimal to
decimal number, decimal to hexadecimal
number, binary to hexadecimal numbers
and hexadecimal to binary numbers.
Program to find the result of binary
addition and subtraction.
Program to find the moment of inertia of
regular bodies about various axes of
rotation.
Program to find the velocity of a rolling
body (without sliding) at any point in an
inclined plane.
Program to study the motion of a spherical

29	Program to study the motion of projectile	
	in central force field.	
30.	Program to study the planetary motion and	
	Kepler's law.	
31.	Monte Carlo simulation	

References

- 1. Basic electronics and linear circuits; N.N. Bhargava, D.C. Kulshreshtha, S.C.Gupta
- 2. OP- Amps and linear integrated circuits; Ramakant A. Gayakwad
- 3. Basic electronics; Santiram Kal
- 4. Basic electronics; B. L. Theraja
- 5. Principles of electronics; V. K. Mehta
- 6. A first course in Electronic s; Anwar A. Khan, Kanchan K. Dey .

Books for Reference:

Web Resources

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	Understand and design electronics experiments	CL1; CL2; CL3; CL6
CO2	Critically evaluate and analyse the results of experimental measurements	CL4; CL5
CO3	Develop and execute C++ programs for solving problems	CL2; CL3; CL6

Course Code	PY1647
Course Title	Project and Research Institute/Science Museum visit
Credits	04
Hours/week	02
Category	Core Course (CC)-Theory
Semester	I
Regulation	2018

Course Overview

- 1. This course provides an opportunity to students to carry out literature search thoroughly on a specific topic following the principles of scientific research methodology.
- 2. This course helps the students to write a project proposal relevant to the topic based on the literature review.

- 3. A systematic and scientific approach to synthesize compounds/complexes and to characterize them using sophisticated analytical techniques can be learnt in this course.
- 4. Analytical skills required to perform experiments, interpret the data and to present the report with a meaningful summary and conclusion can also be acquired in this course.
- 5. This course trains the students to harness soft skill for presenting their research findings in front of a panel of subject experts.

Course Objective

- 1. To review literature on a specified topic using scientific research methodology.
- 2. To write the project proposal scientifically with the mention of its industrial and commercial relevance also.
- 3. To carry out the synthesis of compounds/complexes and characterize them using various analytical instruments for its applications.
- 4. To learn the scientific methodology to collect and interpret the experimental data for the presentation of the report.
- 5. To handle sponsored research projects of social and environmental importance.

Prerequisites

Fundamental Knowledge in Physics, Chemistry and Mathematics

SYLLABUS

Expt	Content	Hours	COs	Cognitive	
				Level	
	Performing experiments related to		CO1;	CL1;	
I	industrially and socially relevant projects.		CO2;	CL2;	
1			CO3;	CL3;	
		02	CO4;	CL4;	
			CO5;	CL5;	
			CO6	CL6	
II			CO1;	CL1;	
			CO2;	CL2;	
			CO3;	CL3;	
			CO4;	CL4;	
		18	CO5;	CL5;	
			CO6	CL6	
Books for Study:					
Books for Reference:					
Web Resources					

Project Report 50 Marks

Standard of the subject and plan Preparation and mastery Originality and logical development Summary, conclusions and references

Viva-voce 25 marks

Use of power point, teaching aids, blackboard etc. Language, Communication and diction Economy of time Answer to questions

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To recall and comprehend the concepts of scientific research methodology for literature survey.	CL1; CL2
CO2	To characterize the synthesized compounds/complexes and to interpret the experimental data systematically	CL3
CO3	To explain and infer the chemical, biological, medicinal, industrial and commercial applications of the product obtained.	CL4
CO4	To report and summarize the findings of their project with respect to its social and environmental importance	CL4; CL5
CO5	To invent and adopt novel methodologies to solve interdisciplinary projects scientifically at national and international levels.	CL6

Course Code	PY1551.4				
Course Title	Environmental Physics				
Credits	02				
Hours/week	03				
Category	Open Course (OC)-Theory (Offered to other Departments)				
Semester	V				
Regulation	2018				
Course Overview	Course Overview				
Course Objective					
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics				

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Essentials of Environmental physics Structure and thermodynamics of the atmosphere; composition of air; Greenhouse effect; Transport of matter; energy and momentum in nature; Stratification and stability of the atmosphere; Laws of motion; Hydrostatic equilibrium; General circulation of the tropics; Elements of weather and climate in India.	18	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
II	Environmental pollution and Degradation Factors governing air, water and noise pollution; Air and water quality standards; Waste disposal; Heat Island effect; Land and sea breeze; Puffs and Plumes; Gaseous and particulate matter; Wet and dry deposition; Dispersal mechanism of air and water pollutants; Mixing height and turbulence; Gaussian plume models; Dispersion models; Environmental degradation; Thermal and radioactive pollution; Nuclear radiation; Health hazards and safety.	18	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
III	Environmental Changes and remote sensing Energy sources and combustion processes; Renewable sources of energy; Solar energy, Wind energy, Bio energy, hydro power; fuel cells; and nuclear energy; Forestry and bio-energy; Deforestation; Degradation of soils; Agriculture and land use changes; Changing composition of local and global environment; Remote sensing techniques.	18	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
Books	for Study: for Reference: esources			

COs	CO Description	Cognitive
		Level

CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	

Course Code	PY1131.1			
Course Title	Mechanics and Properties of Matter			
Credits	02			
Hours/week	02			
Category	Complementary Courses (Co.C) - Theory (Mathematics Main)			
Semester	I			
Regulation	2018			
Course Overview	N .			
Course Objective				
Prerequisites	Fundamental Knowledge in Mechanics			

Unit	Content	Hours	COs	Cognitive Level
I	Dynamics of Rigid Bodies Theorems of MI with proof-Calculation of MI of bodies of regular shapes rectangular lamina, uniform bar of rectangular cross section, annular disc, circular disc, solid sphere-K.E of a rotating body. Determination of MI of a fly wheel (theory and experiment). Oscillations and Waves Examples of SHM oscillator-compound pendulum-determination of g -torsion pendulum-oscillations of two particles connected by a spring-vibration state of a diatomic molecule Wave motion-general equation of wave motion-plane progressive harmonic wave - energy density of a plane progressive wave -intensity of wave and spherical waves- Mechanics of Solids Bending of beams-bending moment-cantilever-beam supported at its ends and loaded in the middle-uniform bending-experimental determination of Y using the above principles with pin and microscopetwisting couple on a cylinder-angle of twist and angle of shear-torsional rigidity.	28	CO1; CO2; CO3	CL1; CL2; CL3; CL4; CL5
II	Surface Tension Excess of pressure on a curved surface- force between two plates separated by a thin layer of liquid-experiment with theory to find surface tension and its temperature dependence by Jaeger' method- equilibrium of a liquid drop over solid and liquid surfaces. Viscosity Flow of liquid through a capillary tube- derivation of Poiseuille's formula - limitations-Ostwald's viscometer- variation of viscosity with temperature.	08	CO4	CL1; CL5; CL6

Books for Study:

- Books for Study

 1. Mechanics: J.C. Upadhyaya, Ram Prasad & Sons

 2. Oscillations & Waves: K. Rama Reddy, S. Badami& V. Balasubramanian (University Press)

Books for Reference:

Web Resources

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level	PSO Addressed
CO1	Differentiate the rigid bodies, interpret the conservation laws and apply the concepts in analysing their advantages in day to day life situations	CL1;CL2;CL	PSO1; PSO2
CO2	Analyse different oscillatory systems and apply the knowledge in practical systems	CL3; CL4	PSO1; PSO4
CO3	Apply the knowledge of elasticity and related mathematical formulation to elucidate the principles behind physical processes	CL4; CL5	PSO2; PSO4
CO4	Recollect the concepts of flow of fluids and surface tension and use them to solve everyday problems	CL1; CL5; CL6	PSO1; PSO4

Course Code	PY1131.2				
Course Title	Rotational Dynamics and Properties of Matter				
Credits	02				
Hours/week	02				
Category	Complementary Courses (Co.C) Theory- (Chemistry Main)				
Semester	I				
Regulation	2018				
Course Overvie	w				
Course Objectiv	ve				
Prerequisites	Fundamental Knowledge in Mechanics				

Unit	Content	Hours	COs	Cognitive Level
	Dynamics of Rigid Bodies			
	Theorems of MI with proof -Calculation			
	of MI of bodies of regular shapes-			
	rectangular lamina, uniform bar of			
	rectangular cross section, annular disc,			

		•		
I	circular disc, solid cylinder, solid sphere-KE of a rotating body-Determination of MI of a flywheel (Theory and Experiment) Oscillations and Waves Examples of S.H oscillator-compound pendulum-determination of g-torsion pendulum-oscillations of two particles connected by a spring-vibration state of a diatomic molecule- Wave motion-general equation of wave motion-plane progressive harmonic wave energy density of a plane progressive wave -intensity of wave and spherical waves-	28	CO1; CO2; CO3	CL1; CL2; CL3; CL4; CL5
	Mechanics of Solids Bending of beams-bending moment- cantilever-beam supported at its ends-and loaded in the middle-uniform bending- experimental determination of Y using the above principles with pin and microscope- twisting couple on a cylinder-angle of twist and			
II	Surface Tension			
	Excess of pressure on a curved surface- force between two plates separated by a thin layer of liquid-experiment with theory to find surface tension and its temperature dependence by Jaeger' method- equilibrium of a liquid drop over solid and liquid surfaces. Viscosity Flow of liquid through a capillary tube- derivation of Poiseuille's formula - limitations-Ostwald's viscometer- variation of viscosity with temperature.	08	CO4	CL1; CL5; CL6
Books	for Study:			
 Mechanics: J.C. Upadhyaya, Ram Prasad & Sons Oscillations & Waves: K.Rama Reddy, S.B. Badami & V. Balasubramaniam (University Press). Books for Reference: 				
DOORS	IVI ACICICIUC.			
Web R	desources			

COs	CO Description	Cognitive	PSO
		Level	Addressed
CO1	Differentiate the rigid bodies, interpret the conservation laws and apply the concepts in analysing their advantages in day to day life situations	CL1;CL2;CL	PSO1; PSO2
CO2	Analyse different oscillatory systems and apply the knowledge in practical systems	CL3; CL4	PSO1; PSO4
CO3	Apply the knowledge of elasticity and related mathematical formulation to elucidate the principles behind physical processes	CL4; CL5	PSO2; PSO4
CO4	Recollect the concepts of flow of fluids and surface tension and use them to solve everyday problems	CL1; CL5; CL6	PSO1; PSO4

Course Code	PY1231.1			
Course Title	Thermal Physics and Statistical Mechanics			
Credits	02			
Hours/week	02			
Category	Complementary Courses (Co.C) - Theory (Mathematics Main)			
Semester	II			
Regulation	2018			
Course Overviev	N .			
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			

Unit	Content	Hours	COs	Cognitive
				Level
I	Transmission of Heat Thermal conductivity and thermometric conductivity-Lee's disc experiment-Weidmann and Franz law (statement only)-energy distribution in the spectrum of black body and results-Wien's displacement law-Rayleigh-Jeans law-their failure and Planck's	14	CO1; CO2; CO3; CO4; CO5;	CL1; CL2; CL3; CL4; CL5; CL5;
	hypothesis-Planck's law-comparison-solar			

	constant-its determination-temperature of sun.			
II	Thermodynamics Isothermal and adiabatic processes-work done-isothermal and adiabatic elasticity Heat engines-Carnot's cycle -derivation of efficiency-petrol and diesel engine cycles- efficiency in these two cases-second laws of thermodynamics-Kelvin and Clausius statements.	09	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
Ш	Entropy (9 hours) Concept of entropy-change of entropy in reversible and irreversible cycles-principle of increase of entropy-entropy and disorder-entropy and available energy-T-S diagram for Carnot's cycle-second law in terms of entropy-calculation of entropy when ice is converted into steam.	09	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL5
IV	Statistical Mechanics (4hours) Statistical probability-Macro and Microstates- Phase space-statistical ensemble-postulates of equal probability-Maxwell Boltzmann Distribution- velocity distribution.	04	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6

Books for Study:

- 1. Heat & Thermodynamics: N.Subramaniam & Brijlal, S.Chand & Co
- 2. Heat & Thermodynamics: W. Zemansky, McGraw Hill **3.** Heat & Thermodynamics: C. L. Arora.

Books for Reference:

Web Resources

COs	CO Description	Cognitive Level
CO1	To develop a knowledge on the laws of thermal conductivity and thermodynamics.	CL1,CL2 & CL3
CO2	To understand the basic laws of thermodynamics.	CL2
CO3	To develop skills in problem solving using the concept of heat and thermodynamics	CL3 & CL4
CO4	To evaluate the entropy and its mathematical correlation with various thermodynamic parameters	CL3,CL4 & CL5
CO5	Applications of thermodynamics in the realization of practical heat engines and refrigerators.	CL3 &CL6
	To develop an appreciation on the concept of theoretical heat	

	engines and practical heat engines.	
CO6	To solve statistical mechanics problems for simple systems.	CL4
CO7	Differentiate between micro and macrostates and its correlation with various thermodynamics systems.	CL5 &CL6

Course Code	PY1231.2		
Course Title	Thermal Physics		
Credits	02		
Hours/week	02		
Category	Complementary Courses (Co.C) Theory- (Chemistry Main)		
Semester	II		
Regulation	2018		
Course Overview	Course Overview		
Course Objective			
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics		

	Unit	Content	Hours	COs	Cognitive
--	------	---------	-------	-----	-----------

				Level
I	Diffusion Graham's law of diffusion in liquids-Fick's law-analogy between liquid diffusion and heat conduction-methods of estimating concentrations-determination of coefficient of diffusivity.	04	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
II	Transmission of Heat Thermal conductivity and thermometric conductivity — Lee's Disc experiment-Weidmann and Franz law (statement only) -Radiation of heat-black body radiation-Kirchhoff's laws of heat radiation-absorptive power-emissive power-Stefan's law (no derivation) -energy distribution in the spectrum of black body and results-Wien's displacement law - Rayleigh-Jeans law-their failure and Planck's hypothesis - Planck's law-comparison-solar constant-temperature of sun.	14	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL5
ш	Thermodynamics Isothermal and adiabatic processes-work done-isothermal and adiabatic elasticity Heat engines-Carnot's cycle -derivation of efficiency-petrol and diesel engine cycles- efficiency in these two cases-second laws of thermodynamics-Kelvin and Clausius statements.	09	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
IV	Entropy (9 hours) Concept of entropy-change of entropy in reversible and irreversible cycles-principle of increase of entropy-entropy and disorder-entropy and available energy-T-S diagram for Carnot's cycle-second law in terms of entropy-calculation of entropy when ice is converted into steam	09	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL5;

Books for Study:

- 1. The general Properties of matter: F. H. Newman&V. H. L. Searle
- 2. Heat & Thermodynamics: N. Subramaniam & Brijlal, S.Chand& Co
- 3. Heat & Thermodynamics: W. Zemansky, McGraw Hill
- 4. Heat & Thermodynamics: C. L. Arora.

Books for Reference:

Web Resources

COs	CO Description	Cognitive

	Level
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	

Course Code	PY1331.1				
Course Title	Optics, Magnetism and Electricity				
Credits	03				
Hours/week	03				
Category	Complementary Courses (Co.C) - Theory (Mathematics Main)				
Semester	III				
Regulation	2018				
Course Overvie	Course Overview				
Course Objective					
Prerequisites	Prerequisites Fundamental Knowledge in Physics, Chemistry and Mathematics				
SYLLABUS					

Content

Hours

COs

Unit

Cognitive

				Level	
	Interference				
	Analytical treatment of interference-theory of				
	interference fringes and bandwidth-				
	Interference in thin films-reflected system-				
I	colour of thin films-fringes of equal				
	inclination and equal thickness -Newton's rings-reflected system-measurement of				
	wavelength and refractive index of liquid				
	Diffraction				
	Phenomenon of diffraction-classification-		CO1;	CL1;	
	Fresnel and Fraunhofer. Fresnel's theory of		CO2;	CL2;	
	approximate rectilinear propagation of light-	24	CO3	CL3;	
	Fresnel diffraction at a straight edge and	34		CL4	
	circular aperture Fraunhofer diffraction at a				
	single slit, two slits and N slits. Plane				
	transmission grating-determination of				
	wavelength				
	Laser and Fibre Optics				
	Principle of operation of laser-population				
	inversion-optical pumping-ruby laser applications of lasers Light propagation in				
	optical fibres-step index fibre-graded index				
	fibre-applications.				
II	Magnetism				
	Magnetic properties of matter-definition and				
	relation between magnetic vectors B, H and				
	M. Magnetic susceptibility and permeability.				
	Magnetic properties-diamagnetism-			CL1;	
	paramagnetism-ferromagnetism-	20	CO4;	CL2;	
	antiferromagnetism Electron theory of	20	CO5;	CL3;	
	magnetism-explanation of ferromagnetism		CO6	CL4;	
	Electricity			CL5; CL6	
	Electricity EMF induced in a coil rotating in a magnetic			CLO	
	field-peak, mean, rms and effective values of				
	A.C. Ac circuits-AC through RC, LC, LR and				
	LCR series circuits-resonance-sharpness of				
	resonance-power factor and choke coil-				
	transformers.				
	for Study:				
	text book of optics – Brijlal & Subramaniam				
	lectricity and Magnetism – Murugesan, S. Chand	& Co Ltd.			
Books	Books for Reference:				
Web R	esources				

COs	CO Description	Cognitive Level	PSO Addressed
CO1	Understanding the optical phenomena - interference and diffraction	CL1; CL2	PSO1;PSO2
CO2	Analyse the concepts of interference and diffraction and apply the knowledge in practical system -Newton's rings, air wedge and diffraction grating	CL2;CL3;CL 4	PSO2;PSO3; PSO4
CO3	Understand the working and application of laser in the field of Fiber Optics	CL2;CL3	PSO1;PSO2
CO4	Distinguish different magnetic materials . Attain knowledge about the theory of magnetism	CL1;CL2;CL 3;CL4	PSO1;PSO2
CO5	Explain the production of ac and its characteristics.	CL2;CL3	PSO1;PSO4
CO6	Apply the knowledge to analyse ac circuits to create practical devices	CL3;CL4;CL 5; CL6	PSO4;PSO5
CO7			

Course Code	PY1331.2		
Course Title	Optics, Magnetism and Electricity		
Credits	03		
Hours/week	03		
Category	Complementary Courses (Co.C) - Theory (Chemistry Main)		
Semester	III		
Regulation	2018		
Course Overview			
Course Objective			
Prerequisites Fundamental Knowledge in Physics, Chemistry and Mathematics			

Unit	Content	Hours	COs	Cognitive Level
I	Interference Analytical treatment of interference-theory of interference fringes and bandwidth- Interference in thin films-reflected system-colour of thin films-fringes of equal inclination and equal thickness Newton's rings-reflected system-measurement of wavelength and refractive index of a liquid. Diffraction Phenomenon of diffraction-classification-Fresnel and Fraunhofer- Fresnel's theory of approximate rectilinear propagation of light-Fresnel diffraction at a straight edge Fraunhofer diffraction at a single slit, two slits and N slits. Plane transmission grating-determination of wavelength. Polarisation Experiments showing the transverse nature of light-plane polarized light-polarization by reflection-Brewster's law-double refraction-Nicol prism-propagation of light in uni-axial crystals-positive and negative crystals-principal refractive indices-half wave plate and quarter wave plate-elliptically and circularly polarized light-optical activity. Laser and Fibre Optics Principle of operation of laser-population inversion-optical pumping-ruby laser applications of lasers. Light propagation in optical fibres-step index fibre-graded index fibre-applications.	34	CO1; CO2; CO3;	CL1; CL2; CL3; CL4;
II	Magnetism Magnetic properties of matter-definition and relation between magnetic vectors B, H and M. Magnetic susceptibility and permeability. Magnetic properties-			CL1;

diamagnetismparamagnetism-ferromagnetism-		CO4;	CL2;
antiferromagnetism. Electron theory of magnetism-		CO5;	CL3;
explanation of ferromagnetism		CO6	CL4;
Electricity	20		CL5;
EMF induced in a coil rotating in a magnetic field-			CL6
peak, mean, rms and effective values of A.C. Ac			
circuits-AC through RC, LC, LR and LCR series			
circuits-resonance-sharpness of resonance-power			
factor and choke coil-transformers.			

Books for Study:

- 1. A text book of optics Brijlal & Subramaniam
- 2. Electricity and Magnetism R. Murugesan, S. Chand& Co Ltd.

Books for Reference:

Web Resources

COs	CO Description	Cognitive Level	PSO Addressed
CO1	Understanding the optical phenomena - interference, polarisation and diffraction	CL1; CL2	PSO1;PSO2
CO2	Analyse the concepts of interference and diffraction and apply the knowledge in practical system -Newton's rings, air wedge and diffraction grating	CL2;CL3;CL 4	PSO2;PSO3; PSO4
CO3	Understand the working and application of laser in the field of Fiber Optics	CL2;CL3	PSO1;PSO2
CO4	Distinguish different magnetic materials . Attain knowledge about the theory of magnetism	CL1;CL2;CL 3;CL4	PSO1;PSO2
CO5	Explain the production of ac and its characteristics.	CL2;CL3	PSO1;PSO4
CO6	Apply the knowledge to analyse ac circuits to create practical devices	CL3;CL4;CL 5; CL6	PSO4;PSO5

Course Code	PY1431.1			
Course Title	Modern Physics and Electronics			
Credits	03			
Hours/week	03			
Category	Complementary Courses (Co.C) - Theory (Mathematics Main)			
Semester	IV			
Regulation	2018			
Course Overview				
Course Objective				
Prerequisites	Prerequisites Fundamental Knowledge in Physics, Chemistry and Mathematics			

Unit	Content	Hours	COs	Cognitive Level
I	Modern Physics Basic features of Bohr atom model-Bohr's correspondence principle -vector atom model-various quantum numbers-magnetic moment of orbital electrons -electron spin-Spin-Orbit coupling-Pauli's exclusion principle- Atomic nucleus-basic properties of nucleus-charge, mass, spin, magnetic moment-binding energy and packing fraction-nuclear forcessalient features-radioactivity-radioactive decay-decay laws-decay constant-half life and mean life-radioactive equilibrium-secular and transient equilibrium-measurement of radioactivity. Quantum Mechanics Inadequacies of classical physics-experimental evidences- quantum theory-Planck's hypothesis-	30	CO1; CO2; CO3	CL1; CL2; CL3; CL4;

		•		
	foundation of quantum mechanics-wave function and probability density-Schrödinger equation- time dependent and time independent-particle in a potential box.			
II	Electronics Current-voltage characteristics of a diode-forward and reverse bias-breakdown mechanism of p -n junction diode-Zener diode and its characteristics-half wave and full wave rectifiers-bridge rectifier-ripple factor, efficiency. Construction and operation of a bipolar junction transistor-transistor configurations current components-transistor characteristics-DC load line-Q point-AC load line transistor biasing-need for biasing-bias stabilization-biasing circuits- voltage divider bias. amplifier-basic features of an amplifier-gain, -frequency response and band width. Digital Electronics Number systems and codes-decimal numbers-binary arithmetic -1's and 2's compliment-decimal to binary conversion-octal numbers-hexadecimal numbers-binary coded decimal-digital codes-logic gates-NOT, OR, AND, NOR and NAND gates. Boolean algebra-Boolean operations -logic expressions-laws of Boolean algebra-DeMorgan's theorem-Boolean expression for gate network-simplification of Boolean expression	24	CO4; CO5;	CL1; CL2; CL3; CL4; CL5; CL6

Books for Study:

- 1. Modern Physics Murugesan, S. Chand& Co. Ltd.
- 2. Principles of Electronics V. K. Mehta.

Books for Reference:

- 1. Concepts of Modern Physics-Arthur Beiser, Shobhit Mahajan, S.Rai Choudhary, McGrawHill Education
- 2. Digital Integrated Electronics-Milman & Halkais, McGrawHill Education

Web Resources

- 1.https://nptel.ac.in/courses/122106034
- 2. http://vlabs.iitkgp.ernet.in/be/#

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	Recognize different atomic models,	CL1, CL2

CO2	Identify radioactive process and its applications	CL1, CL2
CO3	Understand the concepts Quantum Mechanics, Planck's hypothesis and applications and to organise abstract ideas of wave functions into concepts	CL1, CL2, CL3, CL4
CO4	Obtain the theoretical concept of working of various electronic circuits and to analyse the working of electronic circuits	CL 1, CL2, CL3, CL4, CL5, CL6
CO5	Obtain the knowledge about basics of Digital electronics and its applications and to convert digital circuits to boolean logic	CL 1, CL2, CL3, CL4

Course Code	PY1431.2			
Course Title	Atomic Physics, Quantum Mechanics and Electronics			
Credits	03			
Hours/week	03			
Category	Complementary Courses (Co.C) Theory- (Chemistry Main)			
Semester	IV			
Regulation	2018			
Course Overview				
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			
SYLLABUS				

Unit Content	Hours	COs	Cognitive
--------------	-------	-----	-----------

				Level
I	Atomic Physics Basic features of Bohr atom model-Bohr's correspondence principle -vector atom model-various quantum numbers-magnetic moment of orbital electrons -electron spin-Spin-Orbit coupling-Pauli's exclusion principle-periodic table.	12	CO1;	CL1; CL2;
II	Superconductivity Properties of superconductors-zero electrical resistance- Meissner effect- electrical magnetic field-Type I and Type II superconductors-isotope effect-high temperature ceramic superconductors-applications of superconductors.	08	CO2;	CL1; CL2;
III	Quantum mechanics Inadequacies of classical physics-experimental evidences-evidences for quantum theory-Planck's hypothesis-foundation of quantum mechanics-wave function and probability density-Schrodinger equation-time dependent and time independent-particle in a potential box.	14	CO3;	CL1; CL2; CL3; CL4;
IV	Spectroscopic Techniques EM Spectrum- UV, Visible, IR, Radio and microwave regions-principle of various spectrometers used in specific regions of EM spectrum-absorption spectroscopy, emission spectroscopy.	04	CO4;	CL1; CL2;
V	Electronics Current-voltage characteristics of a diode - forward and reverse bias-breakdown mechanism of p -n junction diode-Zener diode and its characteristics-half wave and full wave rectifiers-bridge rectifier-ripple factor, efficiency. Construction and operation of a bipolar junction transistor-transistor configurations current components-transistor characteristics-DC load line-Q point-AC load line transistor biasing-need for biasing-bias stabilization-biasing circuits- fixed bias, emitter feedback bias, voltage divider bias (qualitative study only). Transistor amplifier-basic features of an amplifier-gain, input and output resistances-frequency response and band width.	12	CO5	CL1; CL2; CL3; CL4;
VI	Digital Electronics Number systems and codes-decimal numbers- binary arithmetic -1's and 2's compliment- decimal to binary conversion-octal numbers- hexadecimal numbers-binary coded decimal- digital codes-logic gates-NOT, OR, AND, NOR	04	CO6	CL1; CL2; CL3; CL4; CL5; CL5

and NAND gates.

Books for Study:

- 1. Modern Physics –R. Murugesan, S. Chand& Co. Ltd.
- 2. Principles of Electronics V. K.Mehta.

Books for Reference:

- 1. Concepts of Modern Physics-Arthur Beiser, Shobhit Mahajan, S.Rai Choudhary, McGrawHill Education
- 2. Digital Integrated Electronics-Milman & Halkais, McGrawHill Education

Web Resources

- 1.https://nptel.ac.in/courses/122106034
- 2. http://vlabs.iitkgp.ernet.in/be/#

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	Distinguish different atom models	CL1, CL2
CO2	Obtain the theoretical aspects of different types of superconductors and its applications	CL1, CL2
CO3	Understand the concepts Quantum Mechanics, Planck's hypothesis and applications and organize concepts from abstract ideas	CL1, CL2, CL3, CL4
CO4	Understand different Spectroscopic techniques	CL1, Cl2
CO5	Obtain the theoretical concept of working of various electronic circuits and to analyse the working of amplifiers	CL1, CL2, CL3, CL4
CO6	Obtain the knowledge about basics of Digital electronics and its applications and to convert circuits to Boolean logic	CL1, CL2, CL3. CL4

Course Code	PY1432			
Course Title	Complementary Practical			
Credits	03			
Hours/week	02			
Category	Complementary Course (Co.C) Practical (Common for all Complementary subjects)			
Semester	I, II, IV & IV			
Regulation	2018			
Course Overview				
Course Objective				
Prerequisites	Fundamental Knowledge in Physics, Chemistry and Mathematics			

SYLLABUS

Sl.No	Content	Hours	COs	Cognitive Level
01.	Torsion Pendulum- n by torsional oscillations			
02.	Torsion Pendulum- n and I using equal masses			
03.	Fly Wheel			
04.	Cantilever- Y by pin and microscope method			
05.	Uniform bending- Y by pin and icroscope			
06.	Symmetric bar pendulum - g and radius of			
	gyration			
07.	Surface tension- capillary rise method			
08.	Coefficient of viscosity- capillary flow method			
09.	Specific heat-method of mixtures applying Barton's correction		CO1; CO2;	CL1; CL2;
10.	Lee's disc- Thermal conductivity of cardboard	02	CO3; CO4;	CL3; CL4;
11.	Melde's string- frequency of tuning fork		CO5;	CL5;
12.	Method of parallax- optical constants of		CO6	CL6
	convex lens using i) mirror and mercury			
	ii) mirror and water			
13.	Method of parallax- refractive index of			
	liquid.			

14.	Spectrometer- A, D and n
15.	Spectrometer- dispersive power of a prism
16.	Spectrometer- Grating-normal incidence
17.	Deflection and vibration magnetometer- M
	and Bh
18.	Circular coil- magnetization of a magnet
19.	Carey Foster's bridge - Resistivity
20.	Potentiometer- Resistivity
21.	Potentiometer- Calibration of ammeter
22.	Mirror galvanometer- Current and Voltage
	sensitivity
23.	Diode Characteristics (for Ge and Si
	diodes)
24.	Half wave rectifier-Measurement of ripple
	factor with and without filter capacitor
25.	Full wave rectifier- Measurement of ripple
	factor with and without filter capacitor

References

- 1. Yarwood and Wittle; Experimental Physics for Students, Chapman & Hall Publishers.
- 2. An advanced course in practical physics, Chathopadhyaya, Rakshit and Saha, New central agency, Kolkata.
- 3. A text book of practical physics, S. Viswanathan& Co., Chennai.
- 4. Advanced Practical Physics, B. L. Worsnop and H. T. Flint, Khosla Publishers, Delhi.

Web Resources

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level	PSOs addressed
CO1	Learn to experimentally determine various mechanical constants. Hand on experience on various light sources and spectrometer, learn to arrangeme optics related experimental set-up.	CL6	PSO2
CO2	<u>U</u> nderstand the different phenomenon of optics through though laboratory experiments	CL1, CL2	PSO1
CO3	Gain practical knowledge about electricity and magnetism and measurements such as: Resistance, Voltage, current etc.	CL3	PSO3
CO4	Apply the theories learnt and the skills acquired to solve real time problems	CL4	PSO5

CO5	Data analysis, error calculation and laboratory	CL5, CL4	PSO4
	report preparation		

Learning Outcome (LOC) BASED Continuous Assessments Cognitive Level (CL) and Course Outcome (CO) Based CIA Question Paper Format (UG)

Section		Q. NO	Cognitive Level (CL)						
			CL1	CL2	CL3	CL4	CL5	CL6	
		1	+						
		2	+						
		3	+						
		4	+						
	$(10 \times 1 = 10)$	5	+						
A	Answer All	6		+					
		7		+					
		8		+					
		9		+					
		10		+					
		11			+				
		12			+				
		13			+				
		14			+				
	(0.0.10)	15			+				
_	$(8 \times 2 = 16)$ Answer 8	16			+				
В	out of 12	17			+				
		18				+			
		19				+			
		20				+			
		21				+			
		22				+			
		23					+		
		24					+		
		25					+		
_	$(6 \times 4 = 24)$	26					+		
С	Answer 6	27					+		
	out of 9	28					+		
		29					+		

		30					+	
		31					+	
		32						+
	$(2 \times 15 = 30)$ Answer 2	33						+
D	out of 4	34						+
	000001	35						+
No. of C	No. of CL based Questions with		5 (5)	5 (5)	4(2)	4(2)	6(4)	2(15)
	Max. marks							
No. of Co	No. of CO based Questions with		CO1	CO2	CO3	CO4	CO5	C06
	Max. marks		10(10)		8(1	16)	6(24)	2(30)

Bishop Moore College, Mavelikara Department of Physics

First Semester B.Sc Degree Examination, June, 2022

First Continuous Assessment Examination

PY1141: BASIC MECHANICS & PROPERTIES OF MATTER

TIME: 1.30 hrs Max: 40 marks

SECTION A

Learning Outcome (LOC) BASED End Semester Examination Cognitive Level (CL) and Course Outcome (CO) Based CIA Question Paper Format (UG)

Section		Q. NO	Cognitive Level (CL)						
			CL1	CL2	CL3	CL4	CL5	CL6	
		1	+						
		2	+						
		3	+						
		4	+						
	$(10 \times 1 = 10)$	5	+						
A	Answer All	6		+					
		7		+					
		8		+					
		9		+					
		10		+					
		11			+				
	(8 x 2 = 16) Answer 8 out of 12	12			+				
		13			+				
		14			+				
		15			+				
D		16			+				
В		17			+				
		18				+			
		19				+			
		20				+			
		21				+			
		22				+			
		23					+		
		24					+		
		25					+		
C	$(6 \times 4 = 24)$	26					+		
С	Answer 6 out of 9	27					+		
	Out OI 9	28					+		
		29					+		
		30					+		

		31					+	
		32						+
	$(2 \times 15 = 30)$ Answer 2	33						+
D	out of 4	34						+
	out of 1	35						+
No. of C	No. of CL based Questions with Max. marks		5 (5)	5 (5)	4(2)	4(2)	6(4)	2(15)
No. of CO based Questions with		CO1	CO2	CO3	CO4	CO5	C06	
	Max. marks		10(10)		8(1	16)	6(24)	2(30)

Bishop Moore College, Mavelikara Department of Physics First Semester B.Sc Degree Examination, June, 2022

End Semester Examination

PY1141: BASIC MECHANICS & PROPERTIES OF MATTER

TIME: 3 hrs Max: 80 marks

SECTION A

Learning Outcome (LOC) BASED Continuous Assessments Cognitive Level (CL) and Course Outcome (CO) Based LAB CIA Examination (UG)

Assessment	Criteria	Marks	Cognitive Level (CL)					
			CL1	CL2	CL3	CL4	CL5	CL6
Semester	Formula, circuit, graph, brief procedure	20	+					
Practical Examination	Setting and experimental skill	15		+				
for 80 marks	Observations and tabulations	15			+			
	Substitution, calculation, result with correct unit	20					+	+
	Certified record with 18 experiments	10				+		
No. of CL ba	No. of CL based Questions with Max. marks							
No. of CO based Questions with Max. marks								

Learning Outcome (LOC) BASED Continuous Assessments Cognitive Level (CL) and Course Outcome (CO) Based LAB End Semester Examination (UG)

Assessment	Criteria	Marks	Cognitive Level (CL)					
			CL1	CL2	CL3	CL4	CL5	CL6
Semester	Formula, circuit, graph, brief procedure	20	+					
Practical Examination	Setting and experimental skill	15		+				
for 80 marks	Observations and tabulations	15			+			
	Substitution, calculation, result with correct unit	20					+	+
	Certified record with 18 experiments	10				+		
No. of CL ba	No. of CL based Questions with Max. marks							
No. of CO ba	No. of CO based Questions with Max. marks							

Learning Outcome (LOC) BASED Continuous Assessments Cognitive Level (CL) and Course Outcome (CO) Based Project and Tour Report Examination (UG)

Assessment	Criteria	Marks	Cognitive Level (CL)					
			CL1	CL2	CL3	CL4	CL5	CL6
Semester	Originality of approach	20	+					
Practical	Relevance of the topic	15		+				
Examination for 80 marks	Involvement	15			+			
	Viva-voce	20					+	+
	Presentation of report	10				+		
	Research Institute/	30						
	Science museum visit							
	and Report							
No. of CL ba	No. of CL based Questions with Max. marks							
No. of CO ba	No. of CO based Questions with Max. marks							